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Abstract

Most laboratory experiments studying Tullock contest games find that bids significantly exceed the
risk-neutral equilibrium predictions. We test the generalisability of these results by comparing a
typical experimental implementation of a contest against the familiar institution of a ticket-based
raffle. We find that in the raffle (1) initial bid levels are significantly lower and (2) bids adjust more
rapidly towards expected-earnings best responses. We demonstrate the robustness of our results by
replicating them across two continents at two university labs with contrasting student profiles.

JEL classifications: C72, C91, D72, D83.
Keywords: raffle, learning, mechanism equivalence, experiment.



1 Introduction

“The hero ... is condemned because he doesn’t play the game. [...] But to get a more

accurate picture of his character, [...] you must ask yourself in what way (the hero)

doesn’t play the game”.

— Albert Camus, in the afterword of The Outsider (Camus, 1982, p. 118)

There is an active literature studying contest games using laboratory experiments (Dechenaux
et al., 2015). The workhorse game in these experiments is based on the model of Tullock (1980).
Under the Tullock contest success function (CSF), the ratio of the chances of victory of any two
players is given by the ratio of their bids, raised to a given exponent. Most experimental studies
using the Tullock CSF set the exponent to one, and find bids in the contests exceed the levels
predicted by the Nash equilibrium for risk-neutral contestants, both initially and after repeated
experience with the game.1

In this paper we explore how bid levels and dynamics depend on implementation details of the
contest. The most common situation in which a typical person encounters an institution described
by the Tullock CSF is in the raffle. Raffles are common as fund-raisers for schools, clubs, and
charities. In the typical implementation of a raffle, people purchase individually-numbered tickets,
which are collected in a container of some sort.2 A ticket is drawn and the number announced or
publicised, which determines the winner of the prize.3 We design a treatment in which we describe
the game in the instructions, and carry it out in the implementation, using the common terminology
associated with the raffle. Participants purchase individually-numbered (virtual) tickets, and one
ticket number is drawn and quoted to determine the winner. We compare the performance of
this contest to a baseline implementation using a protocol we designed to be typical of previous
studies. We find that in the raffle, initial bids are significantly lower, and adjustments towards (risk-
neutral) best-responses are faster, with median group bids approaching the risk-neutral prediction.
We replicate our results in two participant pools in two countries, at two universities with student
bodies with contrasting profiles.

As a starting point, we updated the list of Tullock contest studies initiated by Sheremeta (2013).
The 37 papers are listed in Table 1. Because the value of the contest prize differs across studies,

1We focus throughout on the case in which the exponent is equal to one.
2Tickets are most commonly used for their convenience; occasionally other objects such as balls or tokens may be

used. In the annual Great Norwich Duck Race, individually-numbered rubber ducks are dumped en masse into the
River Wensum; the first to float past the designated finish line determines the winner.

3The term “lottery” is often used in experimental instructions, as the meanings of “lottery” and “raffle” are not
always distinguished in common usage. Because “lottery” also has a specific technical meaning in economics and
decision theory, we use “raffle” in this paper to avoid confusion.
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we follow Sheremeta and report a normalised “overbidding rate,” computed as (actual bid - Nash
bid) / Nash bid.

We augmented the survey by collecting information on the experimental protocols used for
presenting the game.4

1. Whether the instructions refer to a ratio of bids mapping into probabilities of winning the

prize. In expressing theoretical models, the Tullock CSF is commonly written in ratio form.
This custom carries over to the writing of experimental instructions. Experiments which
follow this custom, by making explicit mention that the probability of winning is given by
the ratio of the player’s own bid to the total bids of all players, are indicated in the “Ratio
rule” column in Table 1. A majority of studies do present this ratio, with many, including
Fallucchi et al. (2013), Ke et al. (2013), and Lim et al. (2014) explicitly using a displayed
mathematical formula similar to (1).5

2. What concrete randomisation mechanism, if any, is mentioned in the instructions. Many
experiments supplement the mention of a ratio with an example mechanism capable of gen-
erating the probability. For example, instructions may state that it is “as if” bids translate into
lottery tickets, or other objects such as balls or tokens (Potters et al., 1998; Fonseca, 2009;
Masiliunas et al., 2014; Godoy et al., 2015), which are then placed together in a container,
with one drawn at random to determine the winner. The “Example” column of Table 1 lists
the example given to participants in each study.

3. How the realisation of the random outcome is communicated to participants. In represent-
ing the randomisation itself, experimenters rarely use a pseudo-physical representation of the
randomisation process. Among the few that provide a representation, several do so by using
a spinning lottery wheel, on which bids are mapped proportionally onto wedges of a circle,
which is a ratio-format representation. Among this limited sample there is no difference in
reported bidding relative to Nash compared to the body of the literature as a whole. Her-
rmann and Orzen (2008) report bids more than double the equilibrium prediction; Morgan
et al. (2012) and Ke et al. (2013) around 1.5 times equilibrium; and Shupp et al. (2013) find
bids below the equilibrium prediction.

Based on the survey, the emerging standard of recent years, which we refer to as the conven-

tional approach, is for a Tullock contest experiment to

1. introduce the success function in terms of a probability or ratio;

4We were unable to obtain instructions for a few of the studies listed. Cells with entries marked — indicate studies
we were not able to classify.

5Another alternative, giving a full expected payoff table as used by Shogren and Baik (1991), is a rather rare device.
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Ratio Overbidding
Study Treatment Periods rule Example Randomisation rate

Millner and Pratt (1989) r=1 20 Yes Tickets 0.12
Millner and Pratt (1991) Less risk-averse 20 Yes Tickets 0.22
Shogren and Baik (1991) Lottery 32 No Tokens 0.01
Davis and Reilly (1998) Lottery 15 — Bids Die roll/ Card draw 0.46
Potters et al. (1998) Lottery 30 Yes Tokens 0.68
Anderson and Stafford (2003) n=2 1 No Colored marker Physical draw 0.94

n=3 1 No ” ” 0.80
n=4 1 No ” ” 1.39
n=5 1 No ” ” 2.56
n=10 1 No ” ” 1.95

Schmitt et al. (2004) No carryover 5 Yes Tickets 0.75
Herrmann and Orzen (2008) Direct Repeated 15 No Tokens Fortune wheel 1.28
Kong (2008) Less loss-averse 30 Yes Tickets 0.56
Fonseca (2009) SymSim 30 No Ball 1.00
Abbink et al. (2010) 1:1 20 No Tokens Fortune wheel 1.05
Sheremeta (2010) One-stage 30 Yes Tickets 0.52
Sheremeta and Zhang (2010) Individual 30 Yes Tickets 0.95
Ahn et al. (2011) 1V1 15 — — 0.35
Price and Sheremeta (2011) P treatment 30 Yes Tickets 0.90
Sheremeta (2011) GC 30 Yes Tickets 0.33

SC 30 Yes ” 0.31
Cason et al. (2012) Individual-nocomm 30 No Tokens 0.26
Faravelli and Stanca (2012) Lottery 20 Yes Tickets 0.10
Morgan et al. (2012) Small prize 50 No Tokens Fortune wheel 0.45

Large prize 50 No ” ” 0.19
Cohen and Shavit (2012) W/O refund 1 Yes Auction frame 1.52
Fallucchi et al. (2013) Lottery-full 60 Yes Tokens 0.25
Mago et al. (2013) High-r 20 Yes Tickets 0.90

High-r+IP 20 Yes ” 0.51
Low-r+IP 20 Yes ” 1.73

Ke et al. (2013) Share/Fight 12 Yes Spending Fortune wheel 0.50
Kimbrough and Sheremeta (2013) Baseline 30 Yes Tickets 0.95
Shupp et al. (2013) Single-prize 1 Yes Tickets Fortune wheel -0.27
Brookins and Ryvkin (2014) Symmetric 60 Yes Investment 0.42
Chowdhury et al. (2014) PL 30 Yes Tickets 0.75
Lim et al. (2014) n=2 10 Yes Token/ball 0.30

n=4 10 Yes ” 0.59
n=9 10 Yes ” 2.30

Kimbrough et al. (2014) Base-unbalanced 30 Yes Tickets 0.41
Base-balanced 30 Yes ” 0.15
Random-unbalanced 30 Yes ” 0.17
Random-balanced 30 Yes ” 0.25

Masiliunas et al. (2014) Easy-trivial 40 Yes Tokens 0.25
Deck and Jahedi (2015) Experiment 1 1 No Bids 0.64
Price and Sheremeta (2015) Gift 30 Yes Tickets 0.92
Godoy et al. (2015) SIM-RP 30 No Raffle balls -0.34

SIM-NP 30 No ” 0.37
Baik et al. (in press) Medium 25 Yes Tickets 0.73
Baik et al. (2016) Partner(n=3) 25 Yes Tickets 0.53

Partner(n=2) 25 Yes ” 0.20
Mago et al. (2016) NP-NI 20 Yes — 0.94

NP-I 20 Yes — 0.89
Sheremeta (2018) One-shot 1 Yes Tickets 0.81

Table 1: Summary of Tullock contest experiments. “Ratio rule” indicates whether the experimental
instruction describes chances of winning in terms of ratios of bids. “Example” describes the way
in which bids were motivated in terms of an object, if any. “Randomisation” reports how feedback
from the draw mechanism was demonstrated in each period, if at all. “Overbidding rate” is (average
bid - Nash bid) / Nash bid.
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2. give a mechanism like a raffle as an example of how the mechanism works; but

3. not to represent the mechanism of randomisation, beyond identifying the winner.

The standardisation is reflective of the maturity of the literature on experimental contests. A design
with features parallel to other recent papers is more readily comparable to existing results. How-
ever, by not exploring the design space of other implementations, this standardisation leaves the
literature unable to distinguish whether common results, such as bids in excess of the risk-neutral
Nash prediction, are behaviourally inherent to all Tullock contests, or depend on features of the
environment which are not accounted for in standard models.

Understanding how behaviour might be a function of implementation features is particularly
relevant for Tullock CSFs because of their wide applicability, which includes not only raffles but
rent-seeking, electoral competition, research and development, and sports. In the latter applica-
tions, the Tullock CSF is used as a theoretical device to represent an environment in which success
in the contest depends significant both on the bids of the players, and on luck, and is attractive for
such applications because it is analytically tractable. For example, in the symmetric setting with
risk-neutral players and no spillovers, there is a unique Nash equilibrium in which the players play
pure strategies. (Szidarovszky and Okuguchi, 1997; Chowdhury and Sheremeta, 2011)

We chose the raffle implementation not only because of its ubiquity in common experience,
but also because existing results suggest consistently presenting and implementing the contest as
a raffle would maximise the differentiation from the conventional design. Raffle tickets are inher-
ently count-based representations. Differences in processing probabilistic (ratio) versus frequency
(count) information have been studied extensively in psychology. For example, Gigerenzer and
Hoffrage (1995) proposed that humans are well-adapted to manipulating frequency-based infor-
mation as this is the format in which information arises in nature. There is therefore an unresolved
expositional tension in the instructions of many experiments, mixing ratio-based formats in ex-
pressing probabilities of winning and/or fortune wheels, and count-based formats of as-if raffles.

We present the formal description of the Tullock contest game and our experimental design in
Section 2. The summary of the data and the results are included in Section 3. We conclude in
Section 4 with further discussion.

2 Experimental design

The Tullock contest game we study is formally an n-player simultaneous-move game. There is one
indivisible prize, which each player values at v > 0. Each player i has an endowment ω ≥ v, and
chooses a bid bi ∈ [0, ω]. Given a vector of bids b = (b1, . . . , bn), the probability player i receives
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the prize is given by

pi(b) =


bi∑n

j=1 bj
if
∑n

j=1 bj > 0

1
n

otherwise
(1)

If players are risk-neutral, they maximise their expected payoff, written as πi(b) = vpi(b)+(ω−bi).
The unique Nash equilibrium is in pure strategies, with bNE

i = min
{

n−1
n2 v, ω

}
for all players i.

In our experiment, we choose n = 4 and ω = v = 160. We restrict the bids to be drawn
from the discrete set of integers, {0, 1, . . . , 159, 160}. With these parameters, the unique Nash
equilibrium has bNE

i = 30.

Participants played 30 contest periods, with the number of periods announced in the instruc-
tions. The groups of n = 4 participants were fixed throughout the session. Within a group,
members were referred to anonymously by ID numbers 1, 2, 3, and 4; these ID numbers were ran-
domised after each period. All interaction was mediated through computer terminals, using zTree
(Fischbacher, 2007). A participant’s complete history of their own bids and their earnings in each
period was provided throughout the experiment. Formally, therefore, the 4 participants in a group
play a repeated game of 30 periods, with a common public history.6 By standard arguments, the
unique subgame-perfect equilibrium of this supergame interaction is to play the bNE

i = 30 in all
periods irrespective of the history of play.7

We contrast two treatments, the conventional treatment and the ticket treatment, in a between-
sessions design. The instructions for both treatments introduce the game as “bidding for a reward.”8

In the conventional treatment, the instructions explain the relationship between bids and chances of
receiving the reward using the mathematical formula first, pointing out that the chances of winning
are increasing in one’s own bid, with a subsequent sentence mentioning that bids could be thought
of as lottery tickets. Our explanation follows the most common pattern found across the studies
surveyed in Table 1. In the ticket treatment, each penny bid purchases an individually-numbered
lottery ticket, one of which would be selected at random to determine the winner.

The randomisation in each period was presented to participants in line with the explanations in
the instructions. In conventional treatment sessions, after bids were made but before realising the
outcome of the lottery, participants saw a summary screen (Figure 1a), detailing the bids of each
of the participants in the group. After a pause, was followed by a screen announcing the identity of
the winner. In sessions using the ticket treatment, the raffle was played out by providing the range

6That is, all players in the group share the same history of which bids were submitted in each period. Because of
the re-assignment of IDs in each period, the private histories differ, because each participant only knows which of the
four bids in each period was the one they submitted, and whether or not they were the winner in each period.

7Table 1 in Fallucchi et al. (2013) shows that both fixed-groups and random-groups designs are common in the
literature. We choose a fixed-groups design to facilitate the focus in our analysis on the dynamics of behaviour as the
supergame is played out.

8We provide full text of the instructions in Appendix A.
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of identifying numbers of the tickets purchased by each participant (Figure 1b). This screen was
augmented, after a pause, by an indicator showing the number of the selected winning ticket, and
the identity of its owner.

The raffle treatment differs from the conventional in its consistent use of counts of pseudo-
physical objects to express the game, both in instructions and feedback. Moving to this internally
consistent expression of the environment admits two channels through which behaviour in the
ticket treatment could differ from that in the conventional treatment.

1. Description: While both mention lottery tickets as a metaphor, the conventional treatment
instructions discuss the chance of receiving the reward as a proportion, whereas the ticket
treatment uses counts of tickets purchased. Effects due to the description of the mechanism
would be identifiable in the first-period bids, which are taken when participants have not had
any experience with the mechanism or information about the behaviour of others.

2. Experience: The outcome in the ticket treatment is attributed to an identifiable ticket owned
by a participant, while the conventional treatment identifies only the winner. However, the
number of the winning ticket conveys no additional payoff-relevant information beyond the
identity of its owner. An effect due to feedback structure will be identifiable by looking at
the evolution of play within each fixed group over the course of the 30 periods of the session.

Our design and the analysis of the data permit us to look for evidence of effects from each channel.
These two channels roughly follow the distinction drawn by e.g. Hertwig et al. (2004) between
choices taken based on the description of a risk, versus those taken based on experience.

We conducted a total of 14 experimental sessions. Eight of the sessions took place at the
Centre for Behavioural and Experimental Social Science at University of East Anglia in the United
Kingdom, using the hRoot recruitment system (Bock et al., 2014), and six at the Vernon Smith
Experimental Economics Laboratory at Purdue University in the United States, using ORSEE
(Greiner, 2015). We refer to the samples as UK and US, respectively. In the UK, there were four
sessions of each treatment with 12 participants (3 fixed groups) per session; in the US, there were
three sessions of each treatment with 16 participants (4 fixed groups) per session. We therefore
have data on a total of 48 participants (12 fixed groups) in each treatment at each site.

The units of currency in the experiment were pence. In the UK sessions, these are UK pence.
In the US sessions, we had an exchange rate, announced prior to the session, of 1.5 US cents per
pence. We selected this as being close to the average exchange rate between the currencies in the
year prior to the experiment, rounded to 1.5 for simplicity.

Participants received payment for 5 of the 30 periods. The five periods which were paid were
selected publicly at random at the end of the experiment, and were the same for all participants in

7



(a) Conventional treatment

(b) Ticket treatment

Figure 1: Comparison of bid summary screens
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UK US All

Conventional 49.85 53.56 51.70
(43.77) (48.41) (46.18)
N = 1440 N = 1440 N = 2880

Ticket 40.35 41.08 40.72
(35.96) (35.36) (35.65)
N = 1440 N = 1440 N = 2880

Table 2: Descriptive statistics on individual bids. Each cell contains the mean, standard deviation
(in parentheses), and total number of bids. The column All pools the bids from the two sites.

a session.9 Sessions lasted about an hour, and average payments were approximately £10 in the
UK and $15 in the US.

3 Results

We begin with an overview of all 5,760 bids in our sample. Figure 2 displays dotplots for the
bids made in each period, broken out by subject pool and treatment. Overlaid on the dotplots are
solid lines indicating the mean bid in the period, and a shaded area which covers the interquartile
range of bids. Table 2 provides summary statistics on the individual bids for each treatment and
subject pool. Both the figure and table suggest a treatment difference, with bids in the conventional
treatment having a higher mean and larger variance. Aggressive bids at or near the maximum of
160 are infrequent in the ticket treatment after the first few periods, but persist in the conventional
treatment. Figure 3 summarises the distribution of mean bids by group over time. The aggregate
patterns of behaviour are similar in the UK and US.

Result 1. There are no significant differences between the distributions of bids in the UK versus in

the US in either treatment.

Support. We use the group as the unit of independent observation, and compute, for each group,
the average bid over the course of the experiment. The Mann-Whitney-Wilcoxon (MWW) rank-
sum test does not reject the null hypothesis of equal distributions of these group means between
the UK and US pools (p = 0.86, r = 0.479 for the conventional and p = 0.91, r = 0.486 for the
ticket treatment).10 Similarly, the MWW test does not reject the null hypothesis if the group means

9The US participants also received a $5 participation payment on top of their contingent payment, to be consistent
with the conventions at Purdue.

10The MWW test statistic between samples A and B is equivalent to the probability that a randomly-selected value
from sample A exceeds a randomly-selected value from sample B. We report this effect size probability as r, with the
convention that the sample called A is the one mentioned first in the description of the hypothesis in the text. Under
the MWW null hypothesis of the same distribution, r = 0.5.
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Figure 2: All bids by period, grouped by subject pool and treatment. Each dot represents the bid
of one participant in one period. The solid line plots the evolution of the overall mean bid, and the
shaded areas the interquartile range. The horizontal dashed line indicates the Nash equilibrium bid
of 30.
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Figure 3: Distribution of group mean bids, by subject pool and treatment. For each period, the ver-
tical boxes plot the interquartile range of average bids across groups. The black diamond indicates
the median of the group averages.
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Conventional
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Mean bid of group

Figure 4: Distribution of mean bids for each group over the experiment. Each dot represents the
mean bid of one group.

are computed based only on periods 1-10, 11-20, or 21-30.

This result speaks against a hypothesis that a significant amount of the variability observed in
Table 1 is attributable to differences across subject pools. In view of the similarities between the
data from our two subject pools, we continue by using the combined sample for our subsequent
analysis. Our next result treats the full 30-period supergame as a single unit for each group, and
compares behaviour to the benchmark of the unique subgame-perfect Nash equilibrium in which
the stage game equilibrium is played in each period.

Result 2. Mean bids by group are lower in the ticket treatment.

Support. For each group we compute the mean bid over the course of the experiment. Descrip-
tively, the mean over groups is 51.7 in conventional (standard deviation 14.8) and 40.7 in ticket
(standard deviation 9.1). Figure 4 plots the full distribution of these group means. The boxes
indicate the locations of the median and upper and lower quartiles of the distributions; all three
of which are lower in ticket. Using the MWW rank-sum test, we reject the hypothesis that the
distribution in ticket is the same as that in conventional (p = 0.0036, r = 0.255).

We note further from Figure 4 that in each treatment exactly 2 of the 24 groups have mean
group bids below the equilibrium prediction. In ticket, group mean bids are less heterogeneous and
generally closer to the equilibrium prediction, but ticket does not lead to groups over-correcting
and bidding less than the Nash prediction.

The difference between the treatments could be attributable to some difference in how experi-
ential learning takes place because of the feedback mechanism in playing out the raffle, or simply
because participants process the explanation of the game differently. We can look for evidence of
the latter by considering only the first-period bids.

Result 3. The distributions of first-period bids are different between the treatments. Mean and

median bids in the ticket treatment are lower, and closer to the Nash prediction.

Support. Figure 5 displays the distribution of first-period bids for all 192 bidders (96 in each
treatment), with the boxes indicating the median and interquartile range. Because at the time
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Ticket

Conventional
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Figure 5: Distribution of first-period bids for all participants. Each dot represents the bid of one
participant. For each distribution, the superimposed box indicates the median and the lower and
upper quartiles.

of the first-period bids participants have had no interaction, we can treat these as independent
observations. The mean first-period bid in the conventional treatment is 71.1, versus 56.8 in the
ticket treatment. Bids in the conventional treatment exceed the Nash prediction by 41.1 pence,
compared to 26.8 pence for the ticket treatment, a decrease of about 35%. Using the MWW rank-
sum test, we reject the hypothesis that the distribution under the ticket treatment is the same as that
under the conventional treatment (p = 0.020, r = 0.403). The lower quartile initial bid for both
treatments is 10; the median and upper quartiles are lower in ticket than in conventional.

First-period bids on average are above the equilibrium prediction in both treatments. We there-
fore turn to the dynamics of bidding over the course of the session. Figure 6 displays boxplots of
the group average bids period-by-period for each treatment. Average bids decrease over time in
both treatments, and are generally closer to the Nash level in later periods. The rate of change of
average bids over time is larger in the conventional treatment, especially in earlier periods. This is
to be expected if we believe that participants are interested in the earnings consequences of their
decisions. In the first period, the level and heterogeneity of bids in the conventional treatment
suggest participants are further from empirical best response, in earnings terms, than in the ticket
treatment.11 The larger movements in bids in the conventional treatment may then be a direct
corollary of the differences in initial bids between the treatments. There is simply more scope
for participants to improve on their earnings by changing their bids, and participants are presum-
ably more likely to recognise earnings-enhancing adjustments when changes in bids would lead
to larger gains in anticipated earnings. To investigate whether the within-group dynamics differ
between the two treatments, we develop an analysis of how ex-post foregone payoffs evolve over
time within each group.

Consider a group g in session s of treatment c ∈ {conventional, ticket}. We construct for this
group, for each period t, a measure of disequilibrium as follows. In each period t, each bidder i in

11This assertion is supported by the disequilibrium measures as plotted in Figure 7.
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Figure 6: Evolution of group average bids over time. For each period, the vertical boxes plot the
interquartile range of average bids across groups. The black diamond indicates the median of the
group averages.

the group submitted a bid bit. Given these bids, bid bit had an expected payoff to i of

πit =
bit∑
j∈g bjt

× 160 + (160− bit).

For comparison, we can consider bidder i’s best response to the other bids of his group. Letting
Bit =

∑
j∈g:j 6=i bjt, the best response, if bids were permitted to be continuous, would be given by

b̃?it = max{0,
√

160Bit −Bit}.

Bids are required to be discrete in our experiment; the quasiconcavity of the expected payoff func-
tion ensures that the discretised best response b?it ∈ {db̃?ite, bb̃?itc}. This discretised best response
then generates an expected payoff to i of

π?
it =

b?it
b?it +Bit

× 160 + (160− b?it).

We then write12

εcsgt = mediani∈g{π?
it − πit}.

By construction, εcsgt ≥ 0, with εcsgt = 0 only at the Nash equilibrium.13

12If we instead defined εcsgt by taking the maximum we would parallel the definition of ε from Radner (1980). Our
results about the treatment effect on dynamics are unchanged if the maximum is chosen instead.

13Conducting the analysis in the payoff space measures behaviour in terms of potential earnings. The marginal
earnings consequences of an incremental change in bid depends on both bit and Bit, so a solely bid-based analysis
would not adequately capture incentives. In addition, although in general bids are high enough that the best response
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Figure 7: Ex-post measure of disequilibrium ε within groups, by period. Each dot corresponds to
the value of the measure for one group in one period. The solid line plots the evolution of the mean
value, and the shaded areas the interquartile range.

Figure 7 shows the evolution of the disequilibrium measure ε over the experiment. Values of ε
in the first period are generally lower in ticket (mean 41.2, median 33.0) than in conventional (mean
53.0, median 51.2). This follows on from first-period bids being lower in ticket but still generally
above Nash (Result 3). While suggestive, these dot plots alone are not enough to establish whether
the evolution of play differs between the treatments, because it does not take into account the
dynamics of each individual group.

We control for the difference in initial conditions by focusing on the evolution of ε period-
by-period within-group over the experiment. We plot the average value of εcsg(t+1) as a function
of εcsgt for both treatments in Figure 8.14 Pick a group, session, and period (g, s, t) in the con-
ventional treatment and a group, session, and period (g′, s′, t′) in the ticket treatment, such that
εconventionalgst = εticketg′s′t′ . Figure 8 suggests that in the subsequent period, on average, the group
g′ will have a smaller value of ε in period t′ + 1 than the group g in period t + 1. This like-for-
like comparison in terms of initial conditions allows us to distinguish the evolution of a group’s
bidding over time from the fact that groups in the two treatments start in systematically different
initial conditions from their period 1 bids.

Result 4. From the same initial conditions, the disequilibrium measure of a group in the ticket

treatment on average will be lower than a group in the conventional treatment over the course of

the experiment.

in most groups in most periods is to bid low, there are many instances in which the best response for a bidder would
have been to bid higher than they actually did. A focus on payoffs allows us to track the dynamics without having to
account for directional learning in the bid space.

14In Figure 8 we bin observations by rounding εcsgt, and taking the average over all observations with the same
rounded value.
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Figure 8: Average value of disequilibrium measure ε in next period, as a function of a group’s
current ε.

Support. To formalise the intuition suggested by Figure 8, for each treatment c we estimate the
dynamic panel model

εcsg(t+1) = αc + βcεcsgt

using the method of Arellano and Bond (1991), with robust standard errors (reported in parentheses
below). We obtain for the ticket treatment

ε̂ticket,sg(t+1) = 8.358
(1.014)

+ .213
(.059)

εticket,sgt (2)

and for the conventional treatment

ε̂conventional,sg(t+1) = 14.307
(1.849)

+ .236
(.051)

εconventional,sgt. (3)

We reject the null hypothesis that αticket = αconventional (p = .0024 against the two-sided alterna-
tive).15 The slopes are not significantly different. The parameters of these lines approximate the
plots in Figure 8.

The estimates of the intercepts are positive. Therefore, groups with have very small values
of ε in one period tend to see an increase in ε in the subsequent period; that is, these groups, on
average, move away from mutual best response. The fixed point for ε using the point estimates
is about 18.7 for the conventional treatment, and 10.6 for the ticket treatment. These fixed points

15In an augmented model adding a second lag on the right side, the coefficient on the second lag is not significant
in either treatment.
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can be interpreted as a projection of the long-run value of the disequilibrium measure in the two
treatments, and indicate a persistent difference in behaviour between the treatments; in the long
run, groups in the ticket treatment would be closer to mutual best response measured in ex-post
payoff terms.

Although variability around the equilibrium is smaller in the ticket treatment, the data from
our 30-period experiment does not provide evidence that all variability would be eliminated in the
long run. The ticket treatment provides a different way of communicating the random aspect of the
outcome, but it does not eliminate the fact that the outcome is random. Evidence from previous
studies (e.g. Lim et al., 2014) indicates at least some participants react to the noisy sample provided
by the outcome of the contest, even though the draw itself does not provide any information about
the distribution of payoffs that cannot in principle be derived from knowing the bids. Chowdhury
et al. (2014) compare a contest with a Tullock success function and random outcome with one
in which the prize is shared deterministically among the bidders in proportion to their bids, and
find tighter convergence to the equilibrium in the deterministic version. The presence of some
bidders who react to the noisy sampling created by the randomness in the draw, or who adopt
other heuristic approaches to their bidding, would result in persistent deviations from mutual best
response.

4 Discussion

We provide a first investigation into bidding in implementations of a Tullock contest which are
equivalent under standard theoretical assumptions. This literature commonly takes the risk-neutral
Nash equilibrium as a benchmark and defines “overbidding” to be bids in excess of this amount.
We find that a design in which the contest is expressed as a raffle lowers the ratio of bids to the Nash
benchmark. The overbidding rate in the initial period is 1.36 in the conventional treatment and 0.89
in the ticket treatment; over the course of the experiment the overbidding rates are 0.72 and 0.36,
respectively. Although both experimental environments implement a Tullock CSF and are payoff
equivalent, the prediction that the environments are behaviourally equivalent is not supported by
our data.

Our literature survey summarised in Table 2 illustrates that while greater-than-Nash average
bids are the norm, there is substantial variation reported across studies. These studies have been
conducted over years, with different implementation details as well as in different participant pools.
Our design makes a direct comparison of behaviour across participant pools drawn from two uni-
versities in two countries. Usefully these universities have distinct academic profiles and reputa-
tions. Purdue University is noted for its strengths in particular in engineering and other quantitative

17



disciplines, whereas University of East Anglia has no engineering programme but is strong in ar-
eas such as creative writing. Behaviour of participants from these two participant pools is not
substantially different.

Our results provide an assessment of how much of the variation observed in Table 2 may be
attributable to these features of experimental implementation. This complements a strand of the
contests literature which has to date looked at the effects of endowments (Price and Sheremeta,
2015), feedback (Fallucchi et al., 2013), and framing (Chowdhury et al., 2018; Rockenbach et al.,
2018).

We observe differences both in initial bids and in the dynamics of adjustment over the course
of the experiment. Participants make their initial bids after reading the instructions and completing
the comprehension control questions, but prior to having any experience with the mechanism. This
implicates the description of the mechanism, especially the use of counts (frequencies) rather than
ratios (probabilities).

Gigerenzer (1996) and others suggest presenting uncertainty in terms of counts leads to sys-
tematically different judgments relative to ratio-based representations. Additionally, the mere in-
troduction of a mathematical representation such as (1) may affect decisions. Kapeller and Steiner-
berger (2013) conduct an experiment in which they present the solution to the Monty Hall problem
to post-graduate students in economics and social sciences using one of two approaches, a ver-
sion of the solution written verbally based on logical arguments, and one written in mathematical
terms. They document differences in perception of the difficulty of the problem and the percep-
tion of the necessity of “mathematical knowledge” to understand and solve the problem. Xue
et al. (2017) show that participants drawn from the same participant pool as our UK sample who
self-report that they are not “good at math” make earnings-maximising choices substantially less
often in a riskless decision task. We noted that many experimental instructions hedge their bets
on understanding of the implications of the probability of winning formula by pointing out, as our
conventional instructions do, that the chances of winning are increasing in the amount one bids,
other things equal. Although the use of mathematical formalisms is valuable to us as quantitative
researchers in expressing and analysing models, the presence of a “precise” mathematical display
may not improve comprehension or experimental control.

We also find faster adaptation in the direction of approximate mutual best responses when
using the raffle implementation. Our raffle differs from most experiments in our survey in that it
delivers a specific number as the winning ticket. Under standard assumptions the number of the
winning ticket is irrelevant information. However, it does close the loop by carrying out the raffle
in a concrete way, even if the realisation of the outcome is still accomplished by the draw of a
pseudo-random number by the computer.

Both of our treatments implement the same Tullock CSF; the strategy sets, distributions over
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outcomes, and financial incentives are identical. Both are therefore representable by the same non-
cooperative game form; in game theory terms, this makes them both “lottery” or “raffle” contests.
In contrast, in common usage a“raffle” is defined not by the CSF or the game form, but is based on
how the interaction is played out. Wikipedia’s entry for “raffle”16 begins, “A raffle is a gambling
competition in which people obtain numbered tickets, each ticket having the chance of winning a
prize. At a set time, the winners are drawn at random from a container holding a copy of every
number.” Alekseev et al. (2017) distinguish between abstract and context-rich language in experi-
ments. In the case of raffles, this contrast manifests itself, at least in part, as a contrast between the
language of economists and game theorists, who often define an environment primarily in terms of
the consequences of actions, and non-specialists, who more commonly describe an environment in
terms of the way the game is implemented.

When thinking about how to convey a Tullock context game to participants in the laboratory,
we can look to the raffle as one way to explain the CSF. Nevertheless, there are many situations in
which we might apply the Tullock contest model which do not have some of the features present
in a raffle implementation. Suppose we contemplate applying the Tullock contest model to a
sporting contest, in which the strategic choice is an amount of effort expended. In such games, it is
generally not possible to identify a given bit of effort as having been the pivotal one which made the
difference between victory and defeat. However, a raffle identifies one discrete unit of investment
(the winning ticket) as having determined the outcome. This is a relatively straightforward design
decision for an experimenter, as a winner can simply be announced without recourse to naming a
specific ticket or using another similar device; our results provide one measure of the relevance of
this type of feedback for the dynamics of play.

In addition, in sporting contests the relative odds of winning are not literally given by the ratio
of effort investments; in these applications the Tullock contest game form is a metaphor, a useful
and tractable theoretical abstraction. Players in those games are not given a description, either
mathematical or verbal, describing the relationship between their effort choices and the chances
of winning. Our results suggest how the relationship is initially explained does affect initial play.
This is a tension for which the resolution is less clear. We cannot take guidance from the real-world
examples on how to explain the relationship between investments and chances of winning, because
this explanation does not exist in e.g. sports. Nevertheless, in most cases, for experimental control
experimenters do want participants to know and understand the relationship between investment
and probability of winning, so some way to explain the relationship is required. The raffle is likely
the only situation people would typically encounter outside the laboratory, in which a method for

16As at 1 October 2019. Wikipedia’s mixed record for being a reliable factual sources is well-analysed. In our
case, however, Wikipedia is a useful source to quote precisely because its openly-editable approach tends to result in
definitions being phrased in common language.
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implementing the Tullock CSF is described to them. However, those people would probably not
consider a raffle and a sporting contest to be similar games, because the means by which they play
out are very different - even if theorists argue that they present similar strategic incentives.

Many papers, including some of our own previous papers, mix raffle applications and other
applications in their exposition and the implementation of their experiment. In view of the diverse
set of applications to which contest games are applied, we propose that a more careful considera-
tion of how people process, understand, and react to different descriptions of contest mechanisms
would be a useful direction for future work.

References
Klaus Abbink, Jordi Brandts, Benedikt Herrmann, and Henrik Orzen. Intergroup conflict and intra-group punishment

in an experimental contest game. The American Economic Review, 100:420–447, 2010.

T. K. Ahn, R. Mark Isaac, and Timothy C. Salmon. Rent seeking in groups. International Journal of Industrial
Organization, 29(1):116–125, 2011.

Aleksandr Alekseev, Gary Charness, and Uri Gneezy. Experimental methods: When and why contextual instructions
are important. Journal of Economic Behavior & Organization, 134:48–59, 2017.

Lisa R. Anderson and Sarah L. Stafford. An experimental analysis of rent seeking under varying competitive condi-
tions. Public Choice, 115(1-2):199–216, 2003.

Manuel Arellano and Stephen Bond. Some tests of specification for panel data: Monte Carlo evidence and an appli-
cation to employment equations. Review of Economic Studies, 58:277–297, 1991.

Kyung H. Baik, Subhasish M. Chowdhury, and Abhijit Ramalingam. Group size and matching protocol in contests.
Working paper, 2016.

Kyung H. Baik, Subhasish M. Chowdhury, and Abhijit Ramalingam. The effects of conflict budget on the intensity of
conflict: An experimental investigation. Experimental Economics, in press.

Olaf Bock, Ingmar Baetge, and Andreas Nicklisch. hRoot: Hamburg registration and organization online tool. Euro-
pean Economic Review, 71:117–120, 2014.

Philip Brookins and Dmitry Ryvkin. An experimental study of bidding in contests of incomplete information. Exper-
imental Economics, 17(2):245–261, 2014.

Albert Camus. The Outsider, translated by Joseph Laredo. Hamish Hamilton, London, 1982.

Timothy N. Cason, Roman M. Sheremeta, and Jingjing Zhang. Communication and efficiency in competitive coordi-
nation games. Games and Economic Behavior, 76(1):26–43, 2012.

Subhasish M. Chowdhury and Roman M. Sheremeta. Multiple equilibria in Tullock contests. Economics Letters, 112
(2):216–219, 2011.

20



Subhasish M. Chowdhury, Roman M. Sheremeta, and Theodore L. Turocy. Overbidding and overspreading in rent-
seeking experiments: Cost structure and prize allocation rules. Games and Economic Behavior, 87:224–238, 2014.

Subhasish M. Chowdhury, Joo Young Jeon, and Abhijit Ramalingam. Property rights and loss aversion in contests.
Economic Inquiry, 56(3):1492–1511, 2018.

Chen Cohen and Tal Shavit. Experimental tests of Tullock’s contest with and without winner refunds. Research in
Economics, 66(3):263–272, 2012.

Douglas D. Davis and Robert J. Reilly. Do too many cooks always spoil the stew? An experimental analysis of
rent-seeking and the role of a strategic buyer. Public Choice, 95(1-2):89–115, 1998.

Emmanuel Dechenaux, Dan Kovenock, and Roman M Sheremeta. A survey of experimental research on contests,
all-pay auctions and tournaments. Experimental Economics, 18(4):609–669, 2015.

Cary Deck and Salar Jahedi. Time discounting in strategic contests. Journal of Economics & Management Strategy,
24(1):151–164, 2015.

Francesco Fallucchi, Elke Renner, and Martin Sefton. Information feedback and contest structure in rent-seeking
games. European Economic Review, 64:223–240, 2013.

Marco Faravelli and Luca Stanca. When less is more: Rationing and rent dissipation in stochastic contests. Games
and Economic Behavior, 74(1):170–183, 2012.

Urs Fischbacher. z-Tree: Zurich toolbox for ready-made economic experiments. Experimental Economics, 10:171–
178, 2007.

Miguel A. Fonseca. An experimental investigation of asymmetric contests. International Journal of Industrial Orga-
nization, 27(5):582–591, 2009.

Gerd Gigerenzer. The psychology of good judgment. Frequency formats and simple algorithms. Medical Decision
Making, 16:273–280, 1996.

Gerg Gigerenzer and Ulrich Hoffrage. How to improve Bayesian reasoning without instruction: Frequency formats.
Psychological Review, 102:684–704, 1995.

Sara Godoy, Miguel A. Melendez-Jimenez, and Antonio J. Morales. No fight, no loss: Underinvestment in experi-
mental contest games. Economics of Governance, 16(1):53–72, 2015.

Ben Greiner. Subject pool recruitment procedures: Organizating experiments with ORSEE. Journal of the Economic
Science Association, 1:114–125, 2015.

Benedikt Herrmann and Henrik Orzen. The appearance of homo rivalis: Social preferences and the nature of rent
seeking. CeDEx discussion paper series, 2008.

Ralph Hertwig, Greg Barron, Elke Weber, and Ido Erev. Decisions from experience and the effect of rare events in
risky choice. Psychological Science, 15:534–539, 2004.

21



Jakob Kapeller and Stefan Steinerberger. How formalism shapes perception: an experiment on mathematics as a
language. International Journal of Pluralism and Economics Education, 4(2):138–156, 2013.

Changxia Ke, Kai A Konrad, and Florian Morath. Brothers in arms–an experiment on the alliance puzzle. Games and
Economic Behavior, 77(1):61–76, 2013.

Erik O. Kimbrough and Roman M. Sheremeta. Side-payments and the costs of conflict. International Journal of
Industrial Organization, 31(3):278–286, 2013.

Erik O. Kimbrough, Roman M. Sheremeta, and Timothy W. Shields. When parity promotes peace: Resolving conflict
between asymmetric agents. Journal of Economic Behavior & Organization, 99:96–108, 2014.

Xiaojing Kong. Loss aversion and rent-seeking: An experimental study. CeDEx discussion paper series, 2008.

Wooyoung Lim, Alexander Matros, and Theodore L. Turocy. Bounded rationality and group size in Tullock contests:
Experimental evidence. Journal of Economic Behavior & Organization, 99:155–167, 2014.

Shakun D. Mago, Roman M. Sheremeta, and Andrew Yates. Best-of-three contest experiments: Strategic versus
psychological momentum. International Journal of Industrial Organization, 31(3):287–296, 2013.

Shakun D. Mago, Anya C. Samak, and Roman M. Sheremeta. Facing your opponents: Social identification and
information feedback in contests. Journal of Conflict Resolution, 60:459–481, 2016.

Aidas Masiliunas, Friederike Mengel, and J. Philipp Reiss. Behavioral variation in Tullock contests. Working Paper
Series in Economics, Karlsruher Institut für Technologie (KIT), 2014.

Edward L. Millner and Michael D. Pratt. An experimental investigation of efficient rent-seeking. Public Choice, 62:
139–151, 1989.

Edward L. Millner and Michael D. Pratt. Risk aversion and rent-seeking: An extension and some experimental
evidence. Public Choice, 69:81–92, 1991.

John Morgan, Henrik Orzen, and Martin Sefton. Endogenous entry in contests. Economic Theory, 51(2):435–463,
2012.

Jan Potters, Casper G. De Vries, and Frans Van Winden. An experimental examination of rational rent-seeking.
European Journal of Political Economy, 14(4):783–800, 1998.

Curtis R. Price and Roman M. Sheremeta. Endowment effects in contests. Economics Letters, 111(3):217–219, 2011.

Curtis R Price and Roman M Sheremeta. Endowment origin, demographic effects, and individual preferences in
contests. Journal of Economics & Management Strategy, 24(3):597–619, 2015.

Roy Radner. Collusive behavior in noncooperative epsilon-equilibria of oligopolies with long but finite lives. Journal
of Economic Theory, 22:136–154, 1980.

Bettina Rockenbach, Sebastian Schneiders, and Marcin Waligora. Pushing the bad away: Reverse Tullock contests.
Journal of the Economic Science Association, 4(1):73–85, 2018.

22



Pamela Schmitt, Robert Shupp, Kurtis Swope, and John Cadigan. Multi-period rent-seeking contests with carryover:
Theory and experimental evidence. Economics of Governance, 5(3):187–211, 2004.

Roman M. Sheremeta. Experimental comparison of multi-stage and one-stage contests. Games and Economic Behav-
ior, 68(2):731–747, 2010.

Roman M. Sheremeta. Contest design: An experimental investigation. Economic Inquiry, 49(2):573–590, 2011.

Roman M Sheremeta. Overbidding and heterogeneous behavior in contest experiments. Journal of Economic Surveys,
27(3):491–514, 2013.

Roman M. Sheremeta. Impulsive behavior in competition: Testing theories of overbidding in rent-seeking contests.
Economic Science Institute working paper, 2018.

Roman M. Sheremeta and Jingjing Zhang. Can groups solve the problem of over-bidding in contests? Social Choice
and Welfare, 35(2):175–197, 2010.

Jason F. Shogren and Kyung H. Baik. Reexamining efficient rent-seeking in laboratory markets. Public Choice, 69
(1):69–79, 1991.

Robert Shupp, Roman M. Sheremeta, David Schmidt, and James Walker. Resource allocation contests: Experimental
evidence. Journal of Economic Psychology, 39:257–267, 2013.

Ferenc Szidarovszky and Koji Okuguchi. On the existence and uniqueness of pure Nash equilibrium in rent-seeking
games. Games and Economic Behavior, 18:135–140, 1997.

Gordon Tullock. Efficient rent seeking. In James M. Buchanan, Robert D. Tollison, and Gordon Tullock, editors,
Toward a theory of the rent-seeking society, pages 97–112. Texas A&M University Press, College Station, TX,
1980.

Lian Xue, Stefania Sitzia, and Theodore L. Turocy. Mathematics self-confidence and the “prepayment effect” in
riskless choices. Journal of Economic Behavior & Organization, 135:239–250, 2017.

23



A Instructions

The session consists of 30 decision-making periods. At the conclusion, any 5 of the 30 periods will be

chosen at random, and your earnings from this part of the experiment will be calculated as the sum of your

earnings from those 5 selected periods.

You will be randomly and anonymously placed into a group of 4 participants. Within each group,

one participant will have ID number 1, one ID number 2, one ID number 3, and one ID number 4. The

composition of your group remains the same for all 30 periods but the individual ID numbers within a group

are randomly reassigned in every period.

In each period, you may bid for a reward worth 160 pence. In your group, one of the four participants

will receive a reward. You begin each period with an endowment of 160 pence. You may bid any whole

number of pence from 0 to 160; fractions or decimals may not be used.

If you receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment – your bid + the reward.

That is, your payoff in pence = 160 – your bid + 160.

If you do not receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment – your bid.

That is, your payoff in pence = 160 – your bid.

Portion for conventional treatment only

The more you bid, the more likely you are to receive the reward. The more the other participants in your

group bid, the less likely you are to receive the reward. Specifically, your chance of receiving the reward is

given by your bid divided by the sum of all 4 bids in your group:

Chance of receiving the reward =
Your bid

Sum of all 4 bids in your group
.

You can consider the amounts of the bids to be equivalent to numbers of lottery tickets. The computer will

draw one ticket from those entered by you and the other participants, and assign the reward to one of the

participants through a random draw.

An example. Suppose participant 1 bids 80 pence, participant 2 bids 6 pence, participant 3 bids 124

pence, and participant 4 bids 45 pence. Therefore, the computer assigns 80 lottery tickets to participant 1,

6 lottery tickets to participant 2, 124 lottery tickets to participant 3, and 45 lottery tickets for participant

4. Then the computer randomly draws one lottery ticket out of 255 (80 + 6 + 124 + 45). As you can see,

participant 3 has the highest chance of receiving the reward: 0.49 = 124/255. Participant 1 has a 0.31 =

80/255 chance, participant 4 has a 0.18 = 45/255 chance and participant 2 has the lowest, 0.05 = 6/255

chance of receiving the reward.

24



After all participants have made their decisions, all four bids in your group as well as the total of those

bids will be shown on your screen.

Interpretation of the table: The horizontal rows in the left column of the above table contain the ID

numbers of the four participants in every period. The right column lists their corresponding bids. The last

row shows the total of the four bids. The summary of the bids, the outcome of the draw and your earnings

will be reported at the end of each period.

At the end of 30 periods, the experimenter will approach a random participant and will ask him/her to

pick up five balls from a sack containing 30 balls numbered from 1 to 30. The numbers on those five balls

will indicate the 5 periods, for which you will be paid in Part 2. Your earnings from all the preceding periods

will be throughout present on your screen.

Portion for ticket treatment only

The chance that you receive a reward in a period depends on how much you bid, and also how much the other

participants in your group bid. At the start of each period, all four participants of each group will decide how

much to bid. Once the bids are determined, a computerised lottery will be conducted to determine which

participant in the group will receive the reward. In this lottery draw, there are four types of tickets: Type 1,

Type 2, Type 3 and Type 4. Each type of ticket corresponds to the participant who will receive the reward if

a ticket of that type is drawn. So, if a Type 1 ticket is drawn, then participant 1 will receive the reward; if a

Type 2 ticket is drawn, then participant 2 will receive the reward; and so on.

The number of tickets of each type depends on the bids of the corresponding participant:

• Number of Type 1 tickets = Bid of participant 1

• Number of Type 2 tickets = Bid of participant 2
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• Number of Type 3 tickets = Bid of participant 3

• Number of Type 4 tickets = Bid of participant 4

Each ticket is equally likely to be drawn by the computer. If the ticket type that is drawn has your ID

number, then you will receive a reward for that period.

An example. Suppose participant 1 bids 80 pence, participant 2 bids 6 pence, participant 3 bids 124

pence, and participant 4 bids 45 pence. Then:

• Number of Type 1 tickets = Bid of participant 1 = 80

• Number of Type 2 tickets = Bid of participant 2 = 6

• Number of Type 3 tickets = Bid of participant 3 = 124

• Number of Type 4 tickets = Bid of participant 4 = 45

There will therefore be a total of 80 + 6 + 124 + 45 = 255 tickets in the lottery. Each ticket is equally

likely to be selected.

In each period, the calculations above will be summarised for you on your screen, using a table like the

one in this screenshot:

Interpretation of the table: The horizontal rows in the above table contain the ID numbers of the four

participants in every period. The vertical columns list the participants’ bids, the corresponding ticket types,

total number of each type of ticket (second column from right) and the range of ticket numbers for each type

of ticket (last column). Note that the total number of each ticket type is exactly same as the corresponding

participant’s bid. For example, the total number of Type 1 tickets is equal to Participant 1’s bid.

The last column gives the range of ticket numbers for each ticket type. Any ticket number that lies

within that range is a ticket of the corresponding type. That is, all the ticket numbers from 81 to 86 are

tickets of Type 2, which implies a total of 6 tickets of Type 2, as appears from the ‘Total Tickets’ column.

In case a participant bids zero, there will be no ticket that contains his or her ID number. In such a case, the

last column will show ‘No tickets’ for that particular ticket type.
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The computer then selects one ticket at random. The number and the type of the drawn ticket will appear

below the table. The ID number on the ticket type indicate the participant receiving the reward.

At the end of 30 periods, the experimenter will approach a random participant and will ask him/her to

pick up five balls from a sack containing 30 balls numbered from 1 to 30. The numbers on those five balls

will indicate the 5 periods, for which you will be paid in Part 2. Your earnings from all the preceding periods

will be throughout present on your screen.
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