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Abstract

One of the original objectives of the (logit) quantal response equilibrium (LQRE) model

was to provide a method for structural estimation of behaviour in games, when behaviour de-

viated from Nash equilibrium predictions. To date, only Chapter 6 of the book on quantal

response equilibrium by Goeree et al. (2016) focuses on how such estimation can be imple-

mented. We build on that chapter to provide here a more detailed treatment of the method-

ological issues of implementing maximum likelihood estimation of QRE. We compare the

equilibrium correspondence and empirical payoff approaches to estimation, and identify some

considerations in interpreting the results of those approaches when applied to the same data on

the same game. We also provide a more detailed “field guide” to using numerical continuation

methods to accomplish estimation, including guidance on how to tailor implementations to

games with different structures.

JEL Classifications: C63, C72, C90.

Keywords: quantal response, estimation, computation, experiments.

1 Introduction

In their book surveying the history, theory, and applications of quantal response equilibrium (QRE),
Goeree et al. (2016) dedicate Chapter 6 to the topic of using QRE, and in particular the logit spec-
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of QRE Conference at Caltech in March 2022, and the Behavioural Game Theory workshop at University of East
Anglia, for many helpful comments and discussions. Any errors are the responsibility of the authors.
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ification of QRE (LQRE), as a structural model for estimation. That chapter, which is one of the
shorter chapters of the book, is given over to two principal topics. First, the chapter illustrates the
conceptual process of estimating LQRE through the use of fully-explicated MATLAB code, which
computes likelihood-maximising points on the LQRE correspondence for 2 × 2 games. Because
the fitted points are guaranteed to be LQRE of the game, the chapter calls this the equilibrium cor-

respondence approach. The chapter then proceeds to outline, at a very high level, some potential
technical issues in computing LQRE. In light of these potential issues, the chapter introduces an
alternative approach, which removes the need to solve the fixed-point problem in the definition
of LQRE by substituting the empirical payoffs from the observed data; this is referred to as the
empirical payoff approach.

In most of the chapters of Goeree et al. (2016), the authors were able to rely on citing published
articles developing the theory of QRE and its application to various domains. Chapter 6 differs
because there are few papers which discuss the properties of methods for using QRE as a structural
model, or of computational methods for doing so, as topics in their own right. As suggested by our
subtitle, “The missing manual,” in this paper our goal is to fill in more completely and formally
many of the details of the ideas introduced that chapter.

One of the attractive features of the development of QRE as a structural model is that it encodes
information about the strategic structure of the game in the model. QRE has strong foundations
in the tradition of game-theoretic analysis, as seen in the underpinning results in McKelvey and
Palfrey (1995), as well as its relationship to other concepts from standard game theory, such as
the purification argument of Harsanyi (1973). The encoding of the information about the strategic
structure is implicated in the computational cost of computing LQRE: the limit of the set of LQRE
as the precision of responses becomes infinite is a subset of the Nash equilibria of the game. This
is indeed a computationally difficult problem, as we will make more precise in Section 5. The
empirical payoff approach, however, in essence throws away all of this strategic information by
approximating the game as a decision problem. In this paper we illustrate that the implications
of this approximation are not necessarily innocuous. The empirical payoff approach produces
systematically different results than the fixed point method applied to the same game and data.
Differences occur across all games; in some games, most notably those with equilibria involving
randomization, the results from the empirical payoff approach can be so starkly different from
those obtained via the equilibrium correspondence approach as to be misleading about the fit of
the data to the fully game-theoretic LQRE model.

Goeree et al. (2016) assert (p. 154) that “the computation of the logit QRE correspondence (or
a selection from it) can be challenging computationally” and “in many games ... good algorithms
for computing QREs are unavailable.” These statements are not wrong, but neither are they precise.
In particular, there is a lot of nuance hidden under the word “good.” There are two different senses
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in which a computational problem can be “challenging” or, relatedly, an algorithm can be “good”.

The method illustrated in the MATLAB codes provided in Goeree et al. (2016) indeed does
not scale well. Those codes are useful as an expositional device for didactic purposes, but are not
a proper foundation for production-quality code. The elegant structure of the set of LQRE as the
union of one-dimensional differentiable curves makes it suitable for computation using numerical
continuation methods. These methods are good not only at traversing a differentiable curve ef-
ficiently, but can find extreme points of functions, such as a likelihood function, along the curve
with negligible additional computational effort.

However, in view of the computational hardness results about computing Nash equilibria, there
must be some other consideration limiting the performance of numerical continuation methods, at
least for some classes of games. As we develop in more detail, the key piece of information that
a numerical continuation method requires is to know the direction tangent to the curve at a given
point. Computing this requires knowledge of the Jacobian of the system of equations defining an
LQRE. It is here where we pay the computational price for one of the attractive features of LQRE.
For any finite value of the precision parameter, an LQRE has full support. This means we avoid
the zero-likelihood problem in taking any empirical data to the model, as all strategies or actions
occur with positive probability. However, the Jacobian of the LQRE system requires computing
the derivative of the expected payoff of every strategy with respect to every other strategy, and
those expected payoffs require considering all of the contingencies in the game consistent with
those two strategies being played. Practical experience shows that it is the time spent in comput-
ing these payoffs which dominates the running time for LQRE computation and estimation. The
structure of the Jacobian, therefore, is what allows us to formalize the assertion in Goeree et al.
(2016) that computation of LQRE in some “games of incomplete information with many times and
many strategies” can be slow, and therefore offer practical guidance for production-quality code to
implement estimation properly using the equilibrium correspondence.

The paper is organized as follows. Section 2 recaps the essential facts about LQRE and for-
mally states the optimization problems used by the equilibrium correspondence and empirical pay-
off approaches. Section 3 provides some results which partially characterize the mixed strategy
profiles estimated by the empirical payoff approach, and the relationship between those profiles
and the equilibrium correspondence approach. Section 4 gives a more detailed exposition of the
ways in which the results of the two approaches differ by considering selected examples. Section 5
turns to the question of the theoretical and practical complexity of the equilibrium correspondence
approach, outlining recommendations for improving performance to make the approach feasible
in broader classes of games. Section 6 concludes with a summary discussion of the implications
of the principal results.
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2 The logit quantal response equilibrium

2.1 Definitions

For most of this paper, we consider n-player games in normal form. The set of players is N =

{1, . . . , n}, and each player i ∈ N has a set of Ji strategies, Si = {si1, . . . , siJi}; let S be the
Cartesian product of the strategy sets Si, and J =

∑n
i=1 Ji. Let ∆i be the set of probability

distributions over Si. An element πi ∈ ∆i specifies, for each strategy sij ∈ Si, the probability πij

that player i plays that strategy. A mixed-strategy profile is an element π ∈ ∆, where ∆ is the
Cartesian product of the ∆i. We write π0 ∈ ∆ as the centroid of ∆; this is the mixed-strategy
profile such that π0

ij =
1

|Si| for all 1 ≤ i ≤ N and 1 ≤ j ≤ Ji.
We define a game on S by specifying, for each player i ∈ N , a payoff function ui : S → R.

We will use suitably-decorated versions of the symbol Γ to denote such games. Two games Γ

and Γ′ are equal, Γ = Γ′, if and only if they share the same strategy space S = S ′ and the same
utility payoff function u = u′. In general we will work with a fixed strategy space S at any time,
and so games are differentiated by their corresponding payoff function. We assume players are
expected-utility maximizers; therefore the payoff of player i if a mixed-strategy profile π is played
is ui(π) =

∑
s∈S π(s)ui(s), where π(s) =

∏
i∈N πi(si).

Following McKelvey and Palfrey (1995), we make the following definition:

Definition 1. Given a game, a logit quantal response equilibrium (LQRE) is a pair (λ, π) con-

sisting of a real number 0 ≤ λ < ∞ and a mixed-strategy profile π ∈ ∆ which satisfies, for all

players 1 ≤ i ≤ n and all strategies 1 ≤ j ≤ Ji,

πij =
exp [λuij(π)]∑Ji
k=1 exp [λuik(π)]

(1)

It will be convenient in developing some ideas, and in computation, to express the equations (1) in
ratio form. It is equivalent to state that (λ, π) is an LQRE if and only if, for all players 1 ≤ i ≤ n

and all strategies 1 ≤ j ≤ Ji − 1,

πi,j+1

πij
= exp [λ(ui,j+1(π)− uij(π))] ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Ji − 1∑Ji

j=1 πij = 1 ∀i : i ≤ i ≤ n.
(2)

By taking limits as the precision parameter λ becomes large, LQRE can be used to make a
selection from the set of Nash equilibria.

Proposition 2 (McKelvey and Palfrey (1995), Theorem 2). Fix a game, and a sequence {(λi, πi)}∞t=1

of LQRE such that limt→∞ λt = ∞ and limt→∞ πt = π⋆. Then π⋆ is a Nash equilibrium of the

game.
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This result legitimates the following definition, as at places in our analysis it will be useful to
include the limiting Nash equilibria.

Definition 3. Given a game Γ, we define

• L(Γ) to be the (extended) set of LQRE of Γ: the union of all (λ, π) pairs that are LQRE,

and of all pairs (∞, π⋆) where π⋆ is a limit of some sequence of LQRE as in Proposition 2.

• P(Γ) = {π : (λ, π) ∈ L(Γ)}, the set of mixed strategy profiles in L(Γ), which we refer to as

the locus of LQRE profiles of Γ.

Distinguishing the locus of LQRE profiles from the set of LQRE will be useful in what follows,
due to the following well-known property of the logit specification.

Proposition 4. Fix a strategy space S and consider two games, Γ, which has payoff function u,

and Γ′, which has payoff function u′. Then P(Γ) = P(Γ′) if and only if u′ = Ku + L, for some

K > 0 and L ∈ R.

Proof. Fix a strategy profile π ∈ P(Γ′). Then, there exists some λ′ such that, for each 1 ≤ i ≤ N

and 1 ≤ j ≤ Ji − 1,

πi,j+1

πij

= exp
[
λ′(u′

i,j+1(π)− u′
ij(π))

]
= exp [Kλ′(ui,j+1(π)− uij(π))] . (3)

Setting λ = Kλ′, we have that (λ, π) ∈ L(Γ), and π ∈ P(Γ).

The above calculation reminds us that the precision parameter λ is denominated in units of inverse
utility. Finally, we note the following facts about the relationship between L(Γ) and P(Γ):

Fact 5. For a given game Γ:

1. If π ∈ P(Γ) and π ̸= π0, then there exists a unique λ such that (λ, π) ∈ L(Γ).

2. (λ, π0) ∈ L(Γ) for some 0 < λ < ∞ if and only if (λ̂, π0) ∈ L(Γ) for all λ̂ ∈ R+ ∪ {∞}.

2.2 Maximum-likelihood estimation

McKelvey and Palfrey (1995) introduced the convention of taking LQRE to data using maximum
likelihood estimation. Given a game Γ, let p ∈ ∆ denote observed empirical frequencies of play
in a sample: pij is therefore the proportion of plays of the game in which player i played strategy
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sij .1 The best-fit LQRE is selected by maximizing the (log-)likelihood of the data over the set of
LQRE,2 where we follow the convention that 0 log 0 = 0.

π̂(p,Γ) = arg max
π∈P(Γ)

N∑
i=1

Ji∑
j=1

pij log πij (4)

When this is applied directly to the full specification of a game, this is referred to in Goeree et al.
(2016) as the equilibrium correspondence approach.

From Fact 5, the maximizer π̂ maps to a unique value of λ, except in the non-generic edge case
in which π̂ = π0 and π0 is a Nash equilibrium of the game. While we note this includes games
with nontrivial strategic considerations, not least pure-coordination games, this situation is easily
diagnosed. In what follows we therefore focus on the case in which either π̂ ̸= π0, or if π̂ = π0,
then π0 is not a Nash equilibrium.

The analysis of McKelvey and Palfrey (1995) shows that, with the exception of the limiting
Nash equilibrium points, L(Γ) can be expressed as the union of differentiable curves on R+ ×∆.
Let M be the set of those curves, with typical element m ∈ M. We can express the curve m in
parametric form; that is, the curve is defined by some function (λ(s), π(s)). We can then re-express
the problem (4) as

π̂(p,Γ) = arg max
m∈M,(λ(s),π(s))∈m

N∑
i=1

Ji∑
j=1

pij log πij(s) (5)

In this case, the first-order necessary condition for (λ(s), π(s)) to be a local maximizer along a
given curve m ∈ M is3

N∑
i=1

Ji∑
j=1

pij
π′
ij(s)

πij(s)
= 0. (6)

We use the symbol ∇π(s) to denote the vector of derivatives π′
ij(s).

A few observations about our formulation (5) of the problem are in order. First, we take care
to account for the existence of multiple curves comprising the feasible set. In many applications,
attention is focused on the curve, referred to as the principal branch by McKelvey and Palfrey
(1995), which contains the point (0, π0). Such a curve always exists in the feasible set, and fur-

1In applications, one would use the counts of plays rather than frequencies. Using counts or frequencies both result
in the same likelihood-maximising LQRE, and it is these fitted LQRE which are of interest in this paper. Count data
is important when the maximising log-likelihood is important, for example for likelihood-ratio tests.

2When McKelvey and Palfrey (1995) took LQRE to the data from Ochs (1995), which we look at as a case
study below, they estimate Nash equilibrium play for one block of data. Therefore the inclusion of the limiting Nash
equilibria in P(Γ) is essential for the correctness of (4).

3Multiple local maximizers are possible and not uncommon. For example, they occur along a one-dimensional set
in the asymmetric and generalized matching pennies games in Section 4.
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thermore is computationally accessible given that (0, π0) is known to be one endpoint of it. It may
also be the most behaviorally-relevant, either because it is the unique curve that comprises the set,
or because behavior is sufficiently noisy, corresponding to relatively small values of λ, that the
best fit will fall on this curve. Further, we express the component curves as parameterized curves
which are not (necessarily) parameterized by λ. This is essential for dealing with curves other than
the principal one. McKelvey and Palfrey (1995) showed that for any given λ the number of corre-
sponding LQRE profiles is generically odd; combined with Proposition 2 this implies that curves
other than the principal one “connect” two Nash equilibria, and therefore must have at least one
turning point at some finite λ.4 It is often convenient to think of s as the arclength along the curve.
However, this is not necessary; whatever scaling is used cancels out when calculating observable,
empirically-relevant quantities such as the mixed-strategy profiles.

In our formulation (5) and the first-order necessary condition (6), the only place in which
LQRE enters into the equation is via the set of curves M which comprise L(Γ). The equations
therefore in principle apply to any solution concept whose values can be written as the union
of a set of differentiable curves, and tell us that, to take that concept to the data, what will be
important is computing the values of

π′
ij(s)

πij(s)
along those curves. Relatedly, we note that λ does not

appear explicitly in (6). The parameter λ plays an important role in determining the curves in M;
however, (6) shows we can frame the estimation problem in terms of quantities - the entries in
mixed-strategy profiles - which are in principle observable. Later in the paper we will touch on the
interpretation of λ values arising from maximum likelihood estimation processes.

The intuitively-simple advice that the key to solving (4) and (5) is to compute
π′
ij(s)

πij(s)
conceals

important practical computational considerations. Turocy (2005) demonstrated how a given curve
m ∈ M can be followed using numerical continuation methods. An output of this procedure is
the value of

π′
ij(s)

πij(s)
along the curve, meaning that, conditional on tracing the curve, identifying local

extreme points can be done at no extra computational cost.5 However, there are both theoretical
and practical reasons why the time required to solve the fixed-point problem (1) repeatedly along
the curve may scale poorly in practice. We will discuss these practical considerations in greater
detail in Section 5.

2.3 The empirical payoff approach

As an alternative to having to solve the LQRE fixed-point problem, Bajari and Hortacsu (2005)
made the observation that, if in fact players are playing mixed strategies according to some LQRE,

4It is also possible to find examples where the principal curve has turning points in λ.
5McKelvey and Palfrey (1995) computed their estimates using a grid-search method. However, grid searches

run into numerical problems for large λ. For sufficiently small λ, the LQRE correspondence is the fixed-point of a
contraction mapping and therefore iterative methods could be used. However, in general iterative methods are not
guaranteed to converge.

7



then the empirically-observed frequencies of play are consistent estimators of the probabilities
assigned by the LQRE mixed-strategy profile, and, further, because in an LQRE players have
correct beliefs about the play of others, are consistent estimators of players’ beliefs. Therefore,
the empirically-observed frequencies can be used to estimate the expected payoffs to each strategy.
Given the practical relevance of the cost of computing expected payoffs when using the fixed-
point approach, being able to substitute empirical expected payoffs has an obvious computational
attraction.

Formally, this empirical payoff approach defines an auxiliary game Γ̃(Γ, p) which is a func-
tion both of the base game Γ and the observed strategy frequencies p ∈ ∆. This auxiliary game
has the same set of players and strategies as the base game. In the auxiliary game, the payoff
function is defined by ũij(π) = uij(p). This means that ũij is a constant function with respect to
the mixed strategy profile π. As a result, an auxiliary game Γ̃(Γ, p) has a trivial strategic structure;
in fact it is no more than a collection of n decision problems, one for each player. Turocy (2005)
pointed out that for a decision problem, the locus of LQRE profiles is exactly the path of the repli-
cator dynamics (Taylor and Jonker, 1978) applied to the decision problem, where λ is time and the
starting point is the centroid π0.

Given a game Γ, each realized profile of empirical strategy frequencies p results in a different
auxiliary game Γ̃(Γ, p) and therefore a different set of LQRE in the resulting auxiliary game.
Further, the set of LQRE in the realized auxiliary game differs from those in the base game. We
further note that the auxiliary game in general does not preserve properties of the base game: for
example, if the base game is constant-sum, the auxiliary game generally is not.

Given an auxiliary game Γ̃(Γ, p), maximum likelihood estimation is then carried out as in (4).
For notational compactness, for a given profile of strategy frequencies p, we will generally sup-
press explicit reference to the base or auxiliary games, and refer to the mixed strategy profile arising
from the equilibrium correspondence approach as π̂EC(p), with corresponding precision parameter
λ̂EC(p); those arising from the empirical payoff approach are written π̂EP (p) and λ̂EP (p), respec-
tively.

3 Properties of the empirical payoff approach

The empirical payoff approach completely discards the strategic interaction of the game and treats
the situation as a decision problem. This greatly simplifies the structure of the corresponding
feasible set M. As a result, we are able to state some general properties about the resulting
estimator.

First, we remark that any LQRE profile in Γ̃(Γ, p) can also be justified using the principle of
maximum entropy.

8



Proposition 6. Fix a point π ∈ L(Γ̃(Γ, p) and let u =
∑n

i=1

∑Ji
j=1 πijuij(p) be the sum of expected

payoffs across all players at profile π. Then, π maximizes entropy among all strategy profiles which

yield a total payoff of at least u.

Proof. The strategy profile which maximizes entropy subject to the total payoff constraint satisfies
the problem

maximize
ρ∈∆

n∑
i=1

Ji∑
j=1

ρij log ρij

subject to
n∑

i=1

Ji∑
j=1

ρijuij(p) ≥ u

Ji∑
j=1

ρij = 1 ∀i ∈ N,

where we use the fact that randomization is done independently by players, and the entropy of a
product of distributions is the sum of the entropy of the individual distributions. Assigning λ ≥ 0

as the Lagrange multiplier on payoffs and µi ∈ R on each player i’s sum-to-one constraint, we
have for each player i and strategy j,

Lij = 1 + log ρij − λuij(p) + µi = 0. (7)

Fix player i, and two strategies sij and sik of player i. Applying (7) to both strategies and combin-
ing, we obtain

log ρij − log ρik = λ [uij(p)− uik(p)] .

Because this is true for all players and all pairs of strategies for each player, this is equivalent to
the logit probability distribution.

Proposition 6 illustrates the interpretation of λ as the shadow price which trades off randomness
and higher realised payoffs.6 In the statement of the result, the total payoff over all players arises
because of the assumption of a common λ across all players. If, as is frequently done, we use the
data from all players to estimate a common value of λ, the total empirical payoff across all players
determines the resulting estimate.

Proposition 7. Fix a base game Γ and an auxiliary game Γ̃(Γ, p), and suppose the maximum-

6In fact, another way to derive logit is to assume that players receive utility from the act of randomizing itself,
proportionally to the entropy of the mixed strategy they choose.
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likelihood estimator π̂EP (p) ̸= π0. Then π̂EP satisfies a conservation of total payoffs property:

N∑
i=1

Ji∑
j=1

π⋆
ijuij(p) =

N∑
i=1

Ji∑
j=1

pijuij(p). (8)

Furthermore, π̂EP is unique.

Proof. To prove the first claim, L(Γ̃(Γ, p)) consists of a single path in which all probabilities
are monotonic in λ, and is the same as the path of the replicator dynamics in which λ is time.
Therefore, at any (λ, π) ∈ L(Γ̃(Γ, p)) for all 1 ≤ i ≤ N ,

π′
ij(λ)

πij(λ)
= uij(p)−

Ji∑
k=1

πik(λ)uik(p). (9)

Specializing this to π = π̂EP (p) and substituting into the first-order condition (6) we obtain

N∑
i=1

Ji∑
j=1

pij

{
uij(p)−

Ji∑
k=1

π̂EP
ik (p)uik(p)

}
= 0 (10)

Therefore,

N∑
i=1

Ji∑
j=1

pij

Ji∑
k=1

π̂EP
ik (p)(λ)uik(p) =

N∑
i=1

Ji∑
j=1

pijuij(p)

N∑
i=1

Ji∑
j=1

π̂EP
ik (p)uij(p) =

N∑
i=1

Ji∑
j=1

pijuij(p),

where the last step follows because
∑Ji

j=1 = 1 and
∑Ji

k=1 π̂
EP
ik (p)uik(p) is constant with respect to

pij .
To establish uniqueness, the set M associated with the auxiliary game consists of a single

curve. That curve is equivalent to the path taken by the replicator dynamics, with λ interpreted as
time. Because strategy payoffs are constant, this implies the total payoff summed across all players
is strictly increasing, and so any total payoff is associated with at most one point on the curve.

Proposition 7 also identifies the conditions for which the empirical payoff approach will return
an estimated profile that is not π0: the total payoff across all players must exceed what the players
would obtain by uniform randomization. Stochastic best response, in which all players play their
strategies with probabilities in the same order as their rank in expected payoffs, is a sufficient
condition for this to occur. It is not a necessary condition, even in 2 × 2 games, as subsequent
examples will demonstrate.
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A direct consequence of combining Proposition 6 and Proposition 7 is that we can characterize
the strategy profile estimated by the empirical payoff approach.

Corollary 8. Fix a base game Γ and a profile of strategy frequencies p. Suppose the maximum-

likelihood estimator π̂EP
ik (p) ̸= π0, and let u =

∑N
i=1

∑Ji
j=1 pijuij(p) be the sum of expected

payoffs across players at p. Then π̂EP
ik (p) maximizes entropy across all strategy profiles at which

players attain a total payoff of at least u.

A justification for the empirical payoff approach is that, if the true data generating process is
some strategy profile in L(Γ), then as the sample size gets large the empirical frequencies and
empirical strategy payoffs will converge to the true values. If empirical strategy frequencies form
an LQRE profile, then both approaches do indeed produce the same estimator.

Proposition 9. Fix a base game Γ and some (λ, p) ∈ L(Γ). Then, π̂EC(p) = π̂EP (p) = p and

λ̂EC(p) = λ̂EP (p) = λ.

Proof. As is well-known, the global, unconstrained maximizer π̂ of the log-likelihood function
sets π̂ij = p for all 1 ≤ i ≤ N and all 1 ≤ j ≤ Ji. By assumption, p ∈ P(Γ) and therefore
π̂EC(p) = p. Because p ∈ P(Γ̃(Γ, p)), it follows that π̂EP (p) = p. The definition of Γ̃(Γ, p)
ensures that uij(p) = ũij(p); therefore the λ̂ associated with π̂ is the same in both games.

Player 2
(π2) (1− π2)

L R

Player 1
(π1) U 10, 8 0, 18

(1− π1) D 9, 9 10, 8

Table 1: Game 1 from Selten and Chmura (2008).

To develop further the comparison between the equilibrium correspondence and empirical pay-
off approaches, in Table 1 we show the payoff table for Game 1 from Selten and Chmura (2008).
With this and other 2 × 2 games below, for compactness we will write mixed-strategy profiles
and empirical strategy frequencies as π = (π1, π2) and p = (p1, p2), respectively, where the first
component is the probability Player 1 plays U and the second the probability Player 2 plays L.
This game has a unique Nash equilibrium in mixed strategies, with (π1, π2) = (.091, .909). Selten
and Chmura report empirical frequencies of play (p1, p2) = (.079, .690). Given this data, Figure 1
computes the locus of LQRE profiles for both the base game and the auxiliary game given p, and
plots the locations of the mixed strategy profiles estimated by both approaches. The estimated
precision parameters also differ, with λ̂EC = 1.229 > 1.074 = λ̂EP .
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Figure 1: Data and estimation results for Game 1 from Selten and Chmura (2008). The empirical
strategy probabilities are represented by the triangle. The locus of LQRE profiles of the base game
is represented by the darker solid curve, and that of the auxiliary game by the lighter dashed curve.
The dots indicate the corresponding maximum likelihood estimates for the two approaches.
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In this initial example, we can observe that the locus of LQRE, the feasible sets over which the
two approaches optimize, differ qualitatively. They do intersect at a point that is not the centroid,
but the tangents to the curves at the point of intersection are quite different. It is therefore not
surprising that the estimated π̂EC and π̂EP differ; in this case, the estimated π̂EC is closer to the
empirical frequencies p. Finally, in this game, it happens that π̂EP is in fact an LQRE profile of
the base game. In the next series of results, we will explore the extent to which these observations
are general characteristics of the two approaches.

First the example shows that it is possible for the locus of LQRE of the base and auxiliary game
to intersect at a point that is not the observed frequencies. However, the LQRE correspondences,
inclusive of the corresponding λ values, in general do not.

Proposition 10. Fix a base game Γ and observed strategy frequencies p ∈ ∆. Suppose there exists

a π ∈ ∆, with π ̸= π0, such that π ∈ P(Γ) and π ∈ P(Γ̃(Γ, p)). Let (λEC , π) ∈ L(Γ) and

(λEP , π) ∈ L(Γ). Then λEC = λEP if and only if u(π) = u(p).

Proof. Fix a player i ∈ N and a pair of strategies sij, sik ∈ Si. Because (λEC , π) ∈ L(Γ),

πij

πik

= exp
[
λEC(uij(π)− uik(π))

]
.

Because (λEP , π) ∈ L(Γ̃(Γ, p)),

πij

πik

= exp
[
λEP (uij(p)− uik(p))

]
.

Combining these we obtain
λEC

λEP
=

uij(p)− uik(p)

uij(π)− uik(π)
.

Therefore, λEC

λEP = 1 if and only if u(π) = u(p).

Proposition 10 illustrates the usefulness of thinking in terms of estimated behavior (strategy
profiles) separately from the precision parameter. In general, if the two approaches agree that a
mixed strategy profile is an LQRE, they will disagree on the precision parameter λ required to
make that profile an LQRE. Intuitively, this occurs because λ must be interpreted in relation to (the
inverse of) the units of payoff. The two approaches imply different methods for determining the
payoff scale. Roughly speaking, the payoff scale used by the equilibrium correspondence approach
is determined by the range of all payoffs in the game, while the empirical payoff approach uses
only the realized expected payoffs of strategies to determine the size of the stakes of the game.

The domain of applicability of Proposition 10 is admittedly small. It assumes an intersection
between the locus of LQRE of the base and auxiliary games exists. However, both of those are
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Player 2
(π2) (1− π2)

L R

Player 1
(π1) U aL + cUL, bU + dUL aR, bU

(1− π1) D aL, bD aR + cDR, bD + dDR

Table 2: A general 2× 2 normal form game.

one-dimensional sets, and so for games other than 2× 2 games, it is a non-generic situation for the
two sets to intersect except at the centroid or at a limiting pure-strategy equilibrium. We therefore
turn to the case of 2 × 2 games, where we can both develop some general results, and use those
to explore the differences between the two approaches in a series of examples. Table 2 presents a
generic payoff matrix for 2 × 2 games. Except where otherwise noted, we will focus on the case
where cUL+cDR ̸= 0 and dUL+dDR ̸= 0. If both of these sums are zero, then in fact the base game
is just a decision problem, in which the strategic incentives are independent of the other player’s
strategy; in that situation, the equilibrium correspondence and empirical payoff approaches are
identical. Define

π̄1 =
dDR

dUL + dDR

and π̄2 =
cDR

cUL + cDR

.

These are the required values of π1 and π2 that would make Player 2 and Player 1, respectively,
indifferent between their strategies. If both π̄1 ∈ (0, 1) and π̄2 ∈ (0, 1), then (π̄1, π̄2) is a mixed-
strategy Nash equilibrium of the game. However, in the results below, π̄1 and π̄2 are permitted to
correspond to improper probabilities outside the [0, 1] interval.

In 2 × 2 games, we can specialize Proposition 10 to state precisely where an intersection
between the locus of LQRE of the base and auxiliary games will occur, if it does: it will be on
the line connecting (p1, p2) and (π̄1, π̄2).

Proposition 11. Fix a 2 × 2 game Γ and let (p1, p2) be the observed frequencies of play. If

(π1, π2) ∈ P(Γ) and (π1, π2) ∈ P(Γ̃(Γ, p)), and (π1, π2) ̸= p0 and (π1, π2) is not a Nash equilib-

rium of Γ, then
π̄1 − p1
π̄2 − p2

=
π̄1 − π1

π̄2 − π2

(11)

Proof. Because (π1, π2) ∈ P(Γ), there exists 0 < λEC < ∞ such that

π1

1− π1

= exp{λEC(π2(cUL + cDR)− cDR)}
π2

1− π2

= exp{λEC(π1(dUL + dDR)− dDR)}

14



Because (π1, π2) ∈ P(Γ̃(Γ, p)), there exists 0 < λEC < ∞ such that

π1

1− π1

= exp{λEC(p2(cUL + cDR)− cDR)}
π2

1− π2

= exp{λEC(p1(dUL + dDR)− dDR)}

Combining the above,

λEC

λEP
=

π2(cUL + cDR)− cDR

p2(cUL + cDR)− cDR

=
π1(dUL + dDR)− dDR

p1(dUL + dDR)− dDR

π2 − cDR

cUL+cDR

p2 − cDR

cUL+cDR

=
π1 − dDR

dUL+dDR

p1 − dDR

dUL+dDR

π̄1 − p1
π̄2 − p2

=
π̄1 − π1

π̄2 − π2

.

Proposition 11 is illustrated by Figure 1. In that example, the observed data, the intersection
of the two loci of LQRE, and the mixed-strategy equilibrium are all collinear. The Proposition
confirms this is a general characteristic of 2 × 2 games. However, in Figure 1 the intersection of
the two loci is the profile π̂EP estimated by the empirical payoff method. To address how general
this occurrence is, the next Proposition provides a characterisation of the estimated profile π̂EP .

Proposition 12. Fix a 2× 2 game Γ and observed strategy frequencies (p1, p2). Then, (π̂EP
1 , π̂EP

2 )

satisfies
p1 − π̂EP

1

p2 − π̂EP
2

= −dUL + dDR

cUL + cDR

× p1 − π̃1

p2 − π̃2

. (12)

Proof. In the auxiliary game, monotonicity of the unique curve comprising the set of LQRE allows
us to parameterize the curve as (π1(λ), π2(λ)). The empirical payoff estimator (π̂EP

1 , π̂EP
2 ) solves

p1
π′
1(λ)

π1(λ)
− (1− p1)

π′
1(λ)

1− π1(λ)
+ p2

π′
2(λ)

π2(λ)
− (1− p2)

π′
2(λ)

1− π2(λ)
= 0.

We can re-write this as

p1 − π1(λ)

p2 − π2(λ)
= − π′

2(λ)

π2(λ)[1− π2(λ)]
· π1(λ)[1− π1(λ)]

π′
1(λ)

.

Let ∆1 = uU(p)−uD(p) = p2(cUL+cDR)−cDR and ∆2 = uL(p)−uR(p) = p1(dUL+dDR)−dDR.

15



Then, for i = 1, 2, πi(λ) =
eλ∆i

1+eλ∆i
, and π′

i(λ) = ∆iπi(λ)(1− πi(λ)). Therefore,

p1 − π1(λ)

p2 − π2(λ)
= −∆2

∆1

= −p1(dUL + dDR)− dDR

p2(cUL + cDR)− cDR

= −dUL + dDR

cUL + cDR

× p1 − π̄1

p2 − π̄2

.

Corollary 13. Let Γ be a 2×2 game, and let (p1, p2) be the observed frequencies of play. Suppose

(π1, π2) ∈ P(Γ) and (π1, π2) ∈ P(Γ̃(Γ, p)), and (π1, π2) ̸= p0 and (π1, π2) is not a Nash equilib-

rium of Γ. Then (π̂EP
1 , π̂EP

2 ) = (π1, π2) if and only if dUL + dDR = −(cUL + cDR). In particular,

(π̂EP
1 , π̂EP

2 ) = (π1, π2) for constant-sum games.

Proof. Applying dUL + dDR = −(cUL + cDR) to (3) from Proposition 12, p1−π1

p2−π2
= − π̄1−p1

π̄2−p2
. The

claim then follows by applying Proposition 11. To complete the proof, observe that dUL + dDR =

−(cUL + cDR) is necessarily satisfied by any constant-sum game.

Game 1 in Table 1 satisfies dUL+dDR = −(cUL+ cDR), and therefore π̂EP lies at the intersec-
tion of the two sets of LQRE profiles. Indeed, all games considered by Selten and Chmura (2008)
satisfy this property. However, this provides another cautionary note about comparing values of
λ̂EC and λ̂EP . Under the conditions of Corollary 13, π̂EP is in fact an LQRE profile of the base
game; however, (λ̂EP , π̂EP ) is not an LQRE of the base game!

4 Some illustrative examples

To build understanding of the properties of the empirical payoff approach compared to the equilib-
rium correspondence approach, we look at several 2 × 2 games. These games are simple enough
to be amenable to graphical analysis to help unpack the different effects at work in distinguishing
the operation of the empirical payoff approach from the equilibrium correspondence approach. At
the same time, even this simple class of games is rich enough to capture the key considerations.

4.1 Asymmetric matching pennies

McKelvey and Palfrey (1995) illustrated the usefulness of LQRE using data from an asymmetric
version of matching pennies studied by Ochs (1995). The payoff table of the version they con-
sidered is in Table 3b. This game has a unique mixed strategy equilibrium at π⋆ = (π⋆

1, π
⋆
2) =

(0.5, 0.2). The locus of LQRE profiles has a U-shape: in all LQRE, the row player plays U more
than half the time. It is this feature of the LQRE correspondence in this game which illustrates
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LQRE’s usefulness as a model which can explain the “own-payoff” effects observed in experi-
mental studies on this and similar games. In addition, the analysis of McKelvey and Palfrey (1995)
of the data reported in Ochs (1995) results in an estimate of λ = ∞ - that is, Nash equilibrium -
for the final periods of play.

Player 2
(π2) (1− π2)

L R

Player 1
(π1) U 4, 0 0, 1

(1− π1) D 0, 1 1, 0

(a) Payoff table in original units from Ochs (1995).

Player 2
(π2) (1− π2)

L R

Player 1
(π1) U 1.1141, 0.0000 0.0000, 1.1141

(1− π1) D 0.0000, 1.1141 0.2785, 0.0000

(b) Payoff table as transformed by McKelvey and Palfrey (1995).

Actual Fixed-point Empirical payoff

Periods p1 p2 π⋆
1 π⋆

2 λ⋆ π⋆
1 π⋆

2 λ⋆

1-16 0.527 0.366 0.615 0.383 1.856 0.557 0.485 1.007
17-32 0.573 0.393 0.610 0.405 1.568 0.601 0.439 1.518
33-48 0.610 0.302 0.614 0.301 3.306 0.617 0.383 3.344
49-52 0.455 0.285 0.500 0.200 ∞ 0.500 0.500 0.000

(c) Actual data and results of LQRE estimation, with λ expressed in transformed units.

Table 3: Replication of McKelvey and Palfrey (1995) analysis of Ochs (1995), Game 3. Our
estimates using the equilibrium correspondence approach match those reported by McKelvey and
Palfrey. We add estimates using the empirical payoff approach.

McKelvey and Palfrey (1995) broke down the 52 periods of play in the data into four blocks,
and report separate fits for each block. We replicate this analysis in Table 3c, where using the
equilibrium correspondence approach we replicate exactly the same fitted LQRE mixed strategy
profiles and corresponding values of λ. We additionally compute the LQRE mixed strategy profiles
and corresponding values of λ using the empirical payoff approach. For the middle two blocks,
periods 17-32 and 33-48, the two approaches return very similar results. For early play, periods
1-16, the approaches differ noticeably, with the empirical payoff approach reporting a smaller λ
and a mixed-strategy profile closer to the centroid, representing an assessment of play that is less
precise. In the final block, periods 49-52, the contrast between the two approaches is maximally
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stark. The equilibrium correspondence approach suggests play has converged to Nash, while the
empirical payoff approach estimates that play is best described by uniform randomization.

We can build intuition for what drives the similarities, and more importantly the differences, of
the two methods via a graphical analysis, which we provide in Figure 2. Each panel corresponds
to one block of periods. The middle blocks, periods 16-32 and 33-48, are ones in which empirical
play is close to LQRE of the base game. In such a situation, the loci of LQRE profiles of the
base game and the auxiliary game are close to each other, and indeed will intersect nearby. Play
in periods 1-16 is farther from an LQRE of the base game. We see the resulting estimates differ
substantially between the two methods. The plots also allow us to recognise what causes the two
approach to differ so greatly in the final block of periods. This game has the property that all base
game LQRE lie in the quadrant of the space of mixed strategies in which the pure strategy profile
(U,R) is the best response. In the first three blocks, empirical play lies in this quadrant, and so
play is stochastically consistent with best response in that the higher-payoff strategy is played more
frequently by both players. For any empirical frequencies of play which lie in this quadrant, the
locus of LQRE profiles of the corresponding auxiliary game will connect the centroid to (U,R).
In periods 49-52, the row player plays U less than one-half of the time, and therefore the strict best
response for the column player is to play L. The locus of the LQRE profiles of the auxiliary game
is therefore quite different; because the column player plays L (much) less than one-half of the
time, the likelihood-maximizing point on that locus is the centroid. In light of Proposition 7, we
observe also that this means that, despite the empirical strategy frequencies in the final block being
not very far from the Nash equilibrium probabilities, the total expected payoff of the two players
is actually less than they would get by both randomizing uniformly.

The panels of Figure 2 show that the analysis of the performance of the empirical payoff ap-
proach is complicated by the fact that the auxiliary game, and therefore the auxiliary game’s LQRE,
are functions of the observed data. To organize our explorations, we can use use Proposition 4,
which showed that two games have the same locus of LQRE profiles if their payoff functions are
affine transformations of each other. Given any empirical frequency of play p, the payoffs to each
strategy in the corresponding auxiliary game Γ̃(p) depend only on the p of the other player, but
not the strategy the other player plays in the auxiliary game. Therefore, it follows that, among
auxiliary games, the locus P(Γ̃(p)) is constant for all p such that uU (p)−uD(p)

uL(p)−uR(p)
= K for some K.

Because payoffs in two-player games are linear in the probabilities of the other player’s mixed
strategy, these sets of p are rays emanating from the mixed strategy equilibrium.

To simplify our further calculations we use the original payoff matrix as in Table 3a. It is
straightforward to verify that the mixed-strategy profile π = (π1, π2) =

(
5
7
, 2
7

)
is an LQRE, with

λ = 7
3
[ln 5− ln 2].7 At this profile, uU(π) − uD(π) =

3
7

and uL(π) − uR(π) = −3
7
. From this, it

7The analysis of Friedman and Mauersberger (2022) provides a method which makes it possible to find, in many
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(a) Periods 1-16

0.00 0.25 0.50 0.75 1.00
1: Probability row player plays U

0.00

0.25

0.50

0.75

1.00

2:
 P

ro
ba

bi
lit

y 
co

lu
m

n 
pl

ay
er

 p
la

ys
 L

(b) Periods 17-32
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(c) Periods 33-48
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(d) Periods 49-52

Figure 2: Graphical comparison of LQRE analysis of Table 3 via the equilibrium correspondence
and empirical payoff approaches. The solid curve is the locus of LQRE profiles of the base game.
The triangle indicates the location of the empirical frequencies of play. Each dashed curve rep-
resents the locus of LQRE profiles of the auxiliary game arising from the empirical data. Dotted
lines connect the empirical data to the fitted profiles on the loci of the respective approaches.
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(a) Observed data uU (p)−uD(p)
uL(p)−uR(p) = −1.
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(b) Observed data uU (p)−uD(p)
uL(p)−uR(p) = −4.

Figure 3: Graphical comparison of LQRE analysis of Table 3 via the equilibrium correspondence
and empirical payoff approaches. In each panel, we consider families of empirical data which
result in auxiliary games with the same locus of LQRE profiles.

follows that the locus of LQRE for the auxiliary game Γ̃(Γ, π) is a straight line segment between
the centroid and (1, 0). By Proposition 4, this is also the the locus of LQRE for all auxiliary
games Γ̃(Γ, p) where the observed strategy frequencies p lie on the line segment between

(
2
5
, 1
)

and the Nash equilibrium
(
1
5
, 1
2

)
. In Figure 3a we summarize how the estimates returned by the

two approaches compare along this line segment. As play moves towards Nash, the equilibrium
correspondence approach returns estimates which move along the locus of LQRE profiles in the
direction of more precise play; in contrast, the empirical payoff approach returns estimates which
move in the direction of less precise play. This contrast is not unique to this ray of observed strategy
frequencies, but is a general feature of this game. In Figure 3b we repeat the exercise along the
ray of strategy frequencies lying on the line segment between (1, 1) and

(
1
5
, 1
2

)
. The same pattern

emerges: as play moves towards Nash, the equilibrium correspondence approach moves along the
locus towards more precise play, while the empirical payoff approach moves in the direction of
less precise play.

The preceding analysis focuses on the quadrant of mixed strategies in which p1 ≥ 1
2

and
p2 ≥ 1

5
, which is the quadrant which contains the LQRE locus of the game and in which the

observed strategy frequencies from the first three blocks of periods are located. The best reply
to any strategy profile located in this quadrant is (U,L). Therefore, the locus of LQRE of the
auxiliary game generated by any strategy profile in this quadrant is a curve which monotonically
connects the centroid to (1, 0), and cuts across the locus of LQRE of the base game at some point;
the shape of the auxiliary game locus of LQRE and the point of intersection depend on the details

two-player games, strategy profiles with rational probabilities which are LQRE.
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of the observed strategy frequencies.
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(a) Best response (D,L).
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(b) Best response (D,R).
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(c) Best response (U,R).

Figure 4: Graphical comparison of LQRE analysis of Table 3 via the equilibrium correspondence
and empirical payoff approaches. Each panel corresponds to a quadrant of the set of mixed strate-
gies in which one or both strategy frequencies is inconsistent with stochastic best response. In each
panel, we consider families of empirical data which result in auxiliary games with the same locus
of LQRE profiles.

The data from the fourth block of periods, which produced the maximally contrasting results
of Nash play from the equilibrium correspondence approach and uniform play from the empirical
payoff approach, falls outside this quadrant. In the other three quadrants, the locus of LQRE of the
auxiliary game does not intersect the locus of LQRE of the base game, except at the centroid. To
illustrate this, in Figure 4 we repeat the exercise from Figure 3 while looking at line segments of
observed strategy frequencies falling in each of the other three quadrants. Figure 4a looks at the
quadrant in which the data from the final block of periods occurs. In this quadrant, the pure-strategy
best response is (D,L), and therefore the locus of LQRE of the auxiliary game, moves away from
the quadrant in both dimensions as precision increases. Therefore, the empirical payoff approach
maps any empirical strategy frequencies falling in this quadrant to maximally imprecise play at
the centroid. This is true even for any empirical strategy frequency in this quadrant arbitrarily
close to the Nash equilibrium. This illustrates the mechanics behind the behavior of the empirical
payoff approach on the final block of data, and that it is a generic phenomenon that will occur with
substantial probability even if play is arbitrarily close to the Nash equilibrium. Figure 4b looks
at the quadrant in which (D,R) is the best response profile to the observed strategy frequencies.
As illustrated by the example ray, the equilibrium correspondence approach maps all points in this
quadrant to the mixed-strategy equilibrium. In contrast, the empirical payoff approach maps all
points to the maximally-imprecise strategy profile at the centroid.

Finally, Figure 4c looks at the quadrant in which (U,R) is the best response profile. Along the
sample ray of observed strategy frequencies shown, as the frequencies move towards the mixed-
strategy equilibrium, the equilibrium correspondence approach estimates move along the locus of
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Player 2
(π2) (1− π2)

L R

Player 1
(π1) U 4, 0 0, 12

(1− π1) D 0, 15 15, 0

Table 4: A generalized matching pennies game.

LQRE profiles towards the equilibrium as well. In contrast, the estimates from the empirical payoff
approach limit to the mixed strategy profile (.35, .35). This mixed strategy profile is the closest
point on the auxiliary game locus of LQRE to the mixed-strategy equilibrium. However, recall
that the mapping between the locus of LQRE of the auxiliary game and values of the precision
parameter λ are a function of the scale of the difference in the strategy values. For observed strategy
frequencies close to the mixed-strategy equilibrium, the differences in strategy values uU −uD and
uL − uR become small. Therefore, for any point on the locus of LQRE of the auxiliary game,
the corresponding λ becomes larger. Intuitively, this is because any profile on the locus of LQRE
that is not the centroid implies that responses are very precise, and therefore λ is large. So, along
this ray of observed frequencies, the value of λ estimated by the empirical payoff approach does
tend to infinity, even though the fitted mixed strategy profile converges to an interior point that
is not the mixed-strategy equilibrium. As a further remark, this illustrates that although in this
quadrant the observed strategy frequencies are not consistent with stochastic best response to each
other, nevertheless the estimated strategy profile is not the centroid, but instead pick out a point
on the locus of LRE of the auxiliary game which have the same total payoff to both players, as in
Proposition 7.

4.2 Generalized matching pennies

It is fitting to open the examples with the Ochs asymmetric matching pennies game, as it was the
first 2× 2 game to be analyzed through the lens of LQRE. However, the LQRE correspondence of
that game does have a few special features. The locus of LQRE profiles is always contained in the
same quadrant relative to the mixed-strategy equilibrium, and the equilibrium involves one player
mixing equiprobably over their strategies. This latter feature made the game ideal for showcasing
the own-payoff effects that LQRE can capture, but also restricts the possibilities for the compara-
tive statics of the empirical payoff method as a function of the observed strategy frequencies.

Predictions of LQRE have been explored further in the broader class of games dubbed “gen-
eralized matching pennies” by Goeree et al. (2003). Table 4 presents a parameterization of a
generalized matching pennies game we have chosen to draw some contrasts to the Ochs game.
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(d)

Figure 5: Four examples of comparative statics of π̂EC and π̂EP for the generalized matching
pennies game in Table 4.

This game has its unique equilibrium at (π1, π2) =
(
3
4
, 3
4

)
. Figure 5a through Figure 5c display a

parallel exercise to that in Figure 3. Each panel illustrates the estimates of π̂EC and π̂EP for a set of
empirical strategy frequencies that share a common locus of LQRE profiles in the auxiliary game.
Figure 5a demonstrates a case in which, as the observed strategy frequencies move towards the
mixed-strategy equilibrium, both π̂EC and π̂EP move along their respective loci in the direction of
more precise responses. In this case, the locus of LQRE profiles of the auxiliary game is not a bad
approximation of the locus in the base game for a range in the vicinity of the centroid, so estimates
are similar in the two approaches for the less precise points shown. The approaches diverge for
more precise play, with the empirical payoff approach limiting to a point correponding to rather
imprecise play. Figure 5c demonstrates a reversal of this, with the pattern observed in the Ochs
game of more precise play being mapped by the empirical payoff approach to less precise esti-
mates. Figure 5b shows where the switching point lies: in this case as play becomes more precise
π̂EC also becomes more precise while π̂EP is constant. This shows that even in the simplest case of
2× 2 games, the comparative statics of π̂EP are not just game-dependent but even data-dependent
within the game.

In Figure 5d we show the case in which the locus of LQRE profiles of the auxiliary game in-
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tersects that of the base game at the equilibrium point itself. This occurs for any empirical strategy
probabilities on the line segment between

(
11
20
, 1
)

and the equilibrium. For these points, the es-
timates of both approaches do converge to the Nash equilibrium as play becomes more precise;
however they do so from opposite directions, because the loci of LQRE profiles of the two ap-
proaches are orthogonal to each other at the equilibrium point. This line segment demonstrates
the only one along which the empirical payoff approach can successfully estimate a profile that
approximates a Nash equilibrium. Furthermore, λ̂EP also converges to infinity along this line seg-
ment, even though the estimated point is precisely in the middle of the locus of LQRE profiles.
This is a consequence of the empirical payoff approach using the empirical payoffs to determine
the scale of payoffs in the game, and therefore the scale of λ, along the locus.

4.3 Estimation of λ as a function of observed data

Our analysis has focused principally on the locus of LQRE. In this game, there is a one-to-one
mapping between λ and elements of the locus of LQRE, and so therefore it is meaningful to say
that moving along the locus from the centroid towards the mixed-strategy equilibrium is a direction
of increasing precision. However, this ordinal interpretation only applies within a given locus of
LQRE; with the exception of endpoints, we cannot rank whether a point on the locus of LQRE for
the base game is more or less precise than a point on the locus of LQRE for an auxiliary game. In
taking LQRE to the data, it is customary to report estimates of λ itself.

We return to the Ochs asymmetric matching pennies game with payoffs as in Table 3a. To
compare the λ values fitted by the two approaches, in Figure 6 we plot the level sets of λ̂EC and
λ̂EP for selected values of λ.8

From this analysis, we see that for most realizations of the empirical strategy frequencies p,
we will have λ̂EC > λ̂EP . There are two regions which are exceptions. For λ less than about 1,
there is a region above and outside the locus of LQRE profiles where λ̂EP > λ̂EC . For λ greater
than about 1, there likewise is a region “inside” the C-shape of the locus where this occurs. There
are therefore two distinct factors at work which jointly determine whether λ̂EP is greater than or
less than λ̂EC . First, the level sets of λ̂EC are always straight line segments.9 In contrast, the level
sets of λ̂EP are curved, and specifically in the case of this game the upper-contour sets of λ̂EP are
convex. The curvature of the level sets of λ̂EP is a consequence of the locus of LQRE profiles of
the auxiliary game changing as a function of the observed data. Second, although Proposition 9

8The level sets for λ̂EC converge along a line segment. Points along this line segment are ones in which the
likelihood function has two local maximizers, one corresponding to π2 closer to 1

2 , and the other corresponding to
π2 closer to the equilibrium probability of 1

5 . The jog in the line segment in this region is an artefact of the plotting
algorithm struggling with the level sets meeting and then ending along this line segment.

9This is true in all games: for all games, these level sets are subsets of a hyperplane.

24



0.50 0.75 1.00
1: Probability row player plays U

0.00

0.25

0.50

2:
 P

ro
ba

bi
lit

y 
co

lu
m

n 
pl

ay
er

 p
la

ys
 L

0.
01

0.
25 0.50

1.00

2.00

3.0
0

0.
01 0.

25 0.
50 1.00

2.00

3.00

10.00

Figure 6: Level sets of λ̂EC and λ̂EP for various values of λ for the Ochs game in Table 3a. The
solid line is the locus of LQRE profiles for the base game. The darker dot-dashed lines correspond
to level sets of λ̂EC , and lighter dashed lines to level sets of λ̂EP .
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ensures that the level sets with the same λ value must meet at a point on the base game locus of
LQRE corresponding to that λ, in this game they are not tangent to each other but cross. The
curvature of the level sets accounts for the general tendency for λ̂EC > λ̂EP . The regions of
λ̂EP > λ̂EC , and the fact that these regions sit along one side or the other of the locus of LQRE
profiles, is a consequence of the crossing of the level sets coming from the two approaches.

Player 2
(π2) (1− π2)

L R

Player 1
(π1) U aL + cUL, bU + cUL aR, bU

(1− π1) D aL, bD aR + cDR, bD + cDR

Table 5: A family of 2 × 2 normal form games where all LQRE are symmetric. This is obtained
from the payoffs in Table 2 by setting dUL = cUL and dDR = cDR.

The crossing of the level sets for a given λ is a consequence of the crossing of the locus of
LQRE of the base game and the auxiliary game, which we observed in Figure 3. Understanding
the interplay of the two factors contributing to whether λ̂EC > λ̂EP is challenging because, unlike
in Figure 3, we cannot only look at convenient line segments along which the locus of LQRE
profiles of the auxiliary game does not change. We can focus on the curvature of the level sets
of λ̂EP by looking at a family of games in which the level sets of λ̂EC and λ̂EP for a given λ are
tangent when crossing the base game LQRE locus. To do this, we need a family of games in which
the locus of LQRE is the same for both the base game and all auxiliary games, for realized strategy
frequencies which are LQRE of the base game. We accomplish this by looking at 2 × 2 games
where all LQRE are symmetric. Table 5 specializes the payoff structure of Table 2 to this case. In
this family of games, ∆1(π) ≡ uU(π)− uD(π) = π2(cUL + cDR)− cDR is the row player’s payoff
premium to playing U , and ∆2(π) ≡ uL(π)−uR(π) = π1(cUL+cDR)−cDR is the column player’s
payoff premium to playing L. Without loss of generality we will assume cUL > 0, so (U,L) is
always a Nash equilibrium, and also assume cUL > cDR. When cDR > 0, (D,R) is also a Nash
equilibrium, and the locus of LQRE profiles consists of two curves: one, the principal branch, is
the line segment connecting the centroid to (U,L); the other is the line segment connecting the
mixed-strategy equilibrium to (D,R). When cDR ≤ 0, the locus of LQRE profiles consists only of
the line segment connecting the centroid to (U,L). To streamline the analysis we will focus on the
quadrant containing the principal branch, that is, where π1 > 1

2
and π2 > 1

2
; the key observations

apply as well to the other branch, when it exists, with a suitable extension of notation.

Given observed strategy frequencies (p1, p2) in this quadrant, the equilibrium correspondence
approach is equivalent to solving the problem max

x
(p1+p2) log π+(2−p1−p2) log(1−π), which

has solution π̂EC = p1+p2
2

. It is therefore natural to express any observed frequencies (p1, p2) as
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(p+ δ, p− δ), where p is an LQRE profile of the base game and δ ≥ 0 without loss of generality.

Proposition 14. For given observed strategy frequencies (p + δ, p − δ), the sign of π̂EC
1 +π̂EC

2

2
−

π̂EP
1 +π̂EP

2

2
is the same as the sign of cUL + cDR.

Proof. From the proof of Proposition 12, we know that given δ the profile π̂EP (δ) satisfies

p+ δ − π̂EP
1

p− δ − π̂EP
2

= −∆2

∆1

. (13)

Consider the case cUL+ cDR > 0. Then ∆2 > ∆1, which, applying to (13), implies p+ δ− π̂EP
1 >

−p+ δ + π̂EP
2 , which reduces to π̂EP

1 + π̂EP
2 < 2p. The cases cUL + cDR < 0 and cUL + cDR = 0

are analogous. Recalling that π̂EC
1 = π̂EC

2 = p completes the argument.
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(b) cUL = 2, cDR = −2.
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(c) cUL = 2, cDR = −4.

Figure 7: Examples of the three cases for the family of games in Table 5. The empirical strategy
frequencies illustrated are

(
1, 1

2

)
for all three examples, all of which are mapped to

(
3
4
, 3
4

)
by the

equilibrium correspondence approach.

The three cases in Proposition 14 are illustrated in Figure 7. The game in Figure 7a is a
Pareto coordination game; a qualitatively similar picture would arise if D and R were dominated
strategies but the outcome (D,R) is not too bad (cDR < 0 but cUL > −cDR). The game in
Figure 7c is a game in which D and R are dominated strategies, and the outcome arising from the
combination of D and R is particularly bad for both players. The knife-edge case in Figure 7b
arises in, for example, a two-player linear voluntary contributions game. In that case, the empirical
payoff approach always gets ∆1 and ∆2 correct, because those differences are independent of the
strategies played.

Figure 7 alone is not enough to determine whether there are systematic differences in λ between
the two approaches. Figure 8 plots level sets for λ̂EC and λ̂EP . Compared to the Ochs game, we
observe the useful property that in this game, the level sets of λ̂EC and λ̂EP are tangent, for given
λ, at the point they cross the locus of LQRE profiles. We also see that for these example games,
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Figure 8: Level sets of λ̂EC and λ̂EP for games from Figure 7 with symmetric LQRE profiles. The
solid line is the locus of LQRE profiles for the base game. The darker dot-dashed lines correspond
to level sets of λ̂EC , and lighter dashed lines to level sets of λ̂EP .

the curvature of the level sets of λ̂EP is game-specific. We now formalize this observation to
characterize the cases when λ̂EC ≷ λ̂EP .

Lemma 15. For the family of games in Table 5, the empirical payoff approach profile π̂EP satisfies

∆2π̂
EP
2 (1− π̂EP

2 )−∆1π̂
EP
1 (1− π̂EP

1 ) > 0.

Proof. Given realized strategy frequencies p, the level sets of the log-likelihood function satisfy

p1 ln π1 + (1− p1) ln(1− π1) + p2 lnπ2 + (1− p2) ln(1− π2) = K (14)

for any given K. Because in the auxiliary game π1 and π2 are both increasing in λ we can pa-
rameterize the locus of LQRE profiles by (π1, π2(π1)). Differentiating (14) with respect to π1 and
rearranging gives

π1 − p1
π2 − p2

= −π1(1− π1)

π2(1− π2)
π′
2. (15)

Geometrically, this says that along any line segment starting at p, the level sets of the likelihood
function are orthogonal to that line segment. Evaluating (15) at π̂EP and applying Proposition 12,

∆2

∆1

=
π̂EP
1 (1− π̂EP

1 )

π̂EP
2 (1− π̂EP

2 )
π′
2(π̂

EP
1 )

π′
2(π̂

EP
1 ) =

∆2π̂
EP
2 (1− π̂EP

2 )

∆1π̂EP
1 (1− π̂EP

1 )
> 0,

because π′
2 > 0 due to the monotonicity of the locus of LQRE profiles. As a geometric interpre-

tation, note that π2(λ)− π1(λ) is quasiconcave in λ; therefore, this result states that the empirical
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payoff estimator λ̂ occurs at a lower value of λ than the one that maximises the difference between
π2 and π1.

Proposition 16. For the family of games in Table 5, the sign of λ̂EC(p) − λ̂EP (p) is the same as

the sign of cUL + cDR.

Proof. Again from the proof of Proposition 12, we know that given δ,

∆1(p+ δ − π̂EP
1 ) + ∆2(p− δ − π̂EP

2 ) = 0. (16)

We can rearrange this to

∆1π̂
EP
1 +∆2π̂

EP
2 = (∆1 −∆2)δ + (∆1 +∆2)p

= −2κδ2 + (∆1 +∆2)p.

Let ϕ(x) = ex

1+ex
, and note that ϕ′(x) = ϕ(x)(1− ϕ(x)). Because the π̂EP

i are an LQRE profile of
the auxiliary game for some λ̂EP ,

∆1ϕ(λ̂
EP∆1) + ∆2ϕ(λ̂

EP∆2) = −2κδ2 + (∆1 +∆2)p. (17)

Differentiating with respect to δ, noting that λ̂EP , and ∆i are all functions of δ,

∆′
1ϕ(λ̂

EP∆1) + ∆1ϕ
′(λ̂EP∆1)(λ̂

EP ′
∆1 + λ̂EP∆′

1)

+∆′
2ϕ(λ̂

EP∆2) + ∆2ϕ
′(λ̂EP∆2)(λ̂

EP ′
∆2 + λ̂EP∆′

2) = −4κδ + (∆′
1 +∆′

2)p

Let κ = cUL + cDR and note that ∆′
1 = −κ and ∆′

2 = κ,

−κϕ(λ̂EP∆1) + ∆1ϕ
′(λ̂EP∆1)(λ̂

EP ′
∆1 − λ̂EPκ)

+κϕ(λ̂EP∆2) + ∆2ϕ
′(λ̂EP∆2)(λ̂

EP ′
∆2 + λ̂EPκ) = −4κδ

λ̂EP ′
[
∆2

1ϕ
′(λ̂EP∆1) + ∆2

2ϕ
′(λ̂EP∆2)

]
+κ

{[
ϕ(λ̂EP∆2)− ϕ(λ̂EP∆1)

]
+ λ̂EP

[
∆2ϕ

′(λ̂EP∆2)−∆1ϕ
′(λ̂EP∆1)

]}
= −4κδ

Consider the case κ > 0; in this case we want to show that λ̂EP ′
< 0. The expression in square

brackets multiplying λ̂EP ′
< 0 is positive, and the right-hand side is negative. To complete the

argument the expression in curly braces multiplying κ must be positive. ϕ(λ∆2) > ϕ(λ∆1) for all
λ > 0 because ∆2 > ∆1, and ∆2ϕ

′(λ̂EP∆2)−∆1ϕ
′(λ̂EP∆1) > 0 from Lemma 15. The argument

for κ < 0 is analogous.
The result then follows from observing that when δ = 0, λ̂EC = λ̂EP , and λ̂EC is constant with
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respect to δ given p.
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Figure 9: Correspondence plots of πEC
1 (λ) = πEC

2 (λ) and πEP
1 (λ) = πEP

2 (λ) for games from
Figure 7 with symmetric LQRE profiles, given observed strategy frequencies p1 = p2 = 3

4
. The

darker dot-dashed lines correspond to the correspondence πEC , and lighter dashed lines to πEP .

Some intuition for these results can be gained by recalling the difference between the locus of
LQRE profiles and the LQRE correspondence. In this family of games, when the realized strategy
frequencies are the same, p1 = p2, the locus of LQRE profiles of the auxiliary game is exactly the
same as that of the base game. However, the mapping from λ to profiles is not the same. Figure 9
demonstrates this for the case when the observed frequencies are p1 = p2 = 3

4
. In the auxiliary

game, the value of p1 = p2 sets the strength of the incentives between U and D (respectively, L
and R), and this is constant for all λ. Consider the case of the Pareto-coordination game as in
Figure 9a. For small λ, this overstates the strategic incentive, relative to that of the LQRE of the
base game, and so πEP increases more rapidly. For large λ the situation is reversed; the incentives
are stronger in the base game and so the probability of U (respectively L) increases more rapidly.
This is reversed when cDR is very low; this situation is depicted in Figure 9b.

This example shows that the patterns of bias in λ̂EP are not coming from the fact that random-
ization is important in the asymmetric and generalized matching pennies games. In cases in which
a limiting pure-strategy equilibrium is relevant, increasing the probability a strategy is played by
one player often sharpens the incentives of another player, such as occurs in games with a coor-
dination aspect. Omitting this reinforcement effect in LQRE usually leads to a systematic bias in
λ̂EP , which can be in either direction depending on the structure of the game.

5 Feasibility of the equilibrium correspondence approach

In many instances in which we turn to numerical calculation to solve optimization problems, we do
so because we cannot easily characterize the optimizer because the objective function is complex,
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while the constraints on the feasible set are relatively simple. This is the use case for which
optimization routines in most software packages are targeted. The optimization problem defined
in (5) is interestingly different because the objective function is very easy to work with - the log-
likelihood is strictly concave – but the structure of the feasible set P(Γ) is potentially complex for
a non-trivial game.

Because (0, π0) is always path-connected to at least one (∞, π⋆), where π⋆ is a Nash equilib-
rium, computing the full feasible set in (5) is a method for computing a Nash equilibrium. The
problem of computing a Nash equilibrium of a finite game has been shown to be PPAD-complete
(Daskalakis et al., 2009). This is bad news, because it is believed that problems in PPAD are hard,
and no algorithms are known to solve these problems in time polynomial in the size of the input.
So, even computing the principal branch of the LQRE correspondence may be difficult. Mean-
while, the problem of determining whether a game has a second Nash equilibrium is NP-complete,
so optimizing over all LQRE, including those not on the principal branch, is a difficult problem.

However, these complexity class results apply to all problems, that is, all possible games. Fur-
ther, even if it is the case that any algorithm must take time that grows exponentially in the size
of the game, nevertheless exponential growth may be sufficiently slow as not to matter signifi-
cantly when working with games of even moderate size. We observe that the practical problem
of taking LQRE to data is generally not done on randomly-generated games. In experimental set-
tings, experimenters usually choose games which have some structure on their payoff functions,
and the (effective) size of the strategy space in most experimental games is not too large.10 So we
turn to a discussion which outlines how computer codes which solve (5) operate, and the practi-
cal computational load associated with those algorithms as a function of the types of games most
frequently studied. The methods available in the Gambit package (McKelvey et al., 2022) for com-
puting LQRE and doing maximum-likelihood estimation are based on the methods below. As part
of an electronic appendix to this paper we provide standalone implementations in pure Python to
complement the exposition.

The problem of computing points along a smooth curve is well-suited to the use of the predictor-

corrector (PC) method. We will develop the basic ideas briefly, based on the treatment of Allgower
and Georg (2003). Following the developments in Turocy (2005) and Turocy (2010), we can write
a curve m ∈ M as m(s) = (ρ(s), λ(s)) satisfying H(m(s)) = 0, where ρ is the vector of log-
probabilities, ρij(s) = log πij(s), and the curve m is parameterized by arclength s. We can then

10In referring to the “effective” size of a strategy space, we are observing that, while an experiment may permit
participants to select a number from, say, 0 to 1000 inclusive, in practice choices will be concentrated on “accessible”
numbers such as multiples of 10 or 100, and the vast majority of strategies will not appear at all in the experiment’s
dataset.
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re-state the LQRE conditions (2) as

Hij : ρi,j+1 − ρij − λ(ui,j+1(e
ρ)− uij(e

ρ)) ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ Ji − 1

HiΣ :
∑Ji

j=1 e
ρ
ij − 1 ∀i : i ≤ i ≤ n.

(18)

The smoothness of the curve justifies treating the problem as a differential equation on the param-
eter s, and so H ′(m(s))∇m(s) = 0, where ||∇m(s)|| = 1 is chosen by convention. This equation
allows us to compute the direction of the curve ∇m at a given point m(s) based on the system’s
Jacobian H ′(m(s)) at that point.

The PC method11 produces a sequence {mt} of points along the curve. The method requires a
starting point m0 known to be on the curve; for example, starting from (0, π0) allows the principal
branch to be traced. Given a point mt, a predictor for mt+1 is determined by m̂0

t+1 = mt+h∇(mt);
that is, a step of length h is taken in the direction suggested by the tangent to the Jacobian at
mt. This predictor step is typical for any numerical differential-equation solver. More can be
done, however, by taking advantage of the knowledge that H(m(s)) = 0; for example, we can
apply Newton’s method for finding a zero of a system of equations, an iterative process which
converges quadratically to a solution. Specifically, a sequence of correctors can be computed via
m̂k+1

t+1 = m̂k
t+1 − H ′(m̂k

t+1)
+H(m̂k

t+1), where A+ denotes the Moore-Penrose inverse of A; this
iteration can be done until a required accuracy ||m̂k

t+1|| < ε is obtained. The point accepted under
this criterion then becomes mt+1.

We can contrast the PC method with the approach taken in the sample MATLAB codes in
Goeree et al. (2016). In those codes, the equations defining logit responses are transformed into
a minimization problem by taking the sum of squares of “belief errors,” that is, the differences
between the belief probabilities and the logit responses to those beliefs. It is true that the global
minima of this function correspond exactly to LQRE. However, as pointed out by Judd (1998), the
technique of converting finding the zeroes of a system of equations to one in which a function is
minimized has a number of unattractive numerical properties. In particular, the condition number
of the Hessian of the objective function is roughly the square of the condition number of the
Jacobian of the system of equations. As a result, numerical optimization routines may struggle
to find a solution even when methods for solving the system of equations directly experience no
problems.12

This brief discussion of the ideas behind predictor-corrector methods is useful reference for
understanding the practical computational expectations for being able to solve problem (5). First,

11Properly speaking, there are many variations on the predictor-corrector idea for numerical continuation, and as
such referring to “a” PC method would be more proper. In this paper we will discuss one implementation, and as such
use the definite article where it is more natural and where reference to a specific implementation is unambiguous from
the context.

12See the discussion on pages 171–173 of Judd (1998) for further details.
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we note that the PC method computes ∇mt for every point mt. The values of mt and ∇mt are
exactly the data required to be able to evaluate the first-order condition (5). Newton’s method can
be adapted to find a zero of a function such as (5) with desired precision and likewise benefits from
quadratic convergence. This formalizes the observation that all of the hard computational work for
solving problem (5) is in computing points on or sufficiently close to the curves in M; having done
this computation, finding zeroes of the first-order condition can be done at essentially zero extra
computational effort. We will therefore focus our discussion on practical aspects of the process of
tracing out a given curve m.

So far, we have not discussed the choice of the hyperparameter h of the PC method. Clearly
h cannot be chosen as a constant, because the curves comprising L(Γ) which limit to a Nash
equilibrium have an infinitely-long arclength.13 PC methods generally use an adaptive steplength.
The idea behind steplength adaptation is that the predictor step just needs to be “good enough”
that the corrector step converges quickly to a point on the curve. Given a current steplength h and
a point m(s) on the curve, if m(s) + h∇m(s) turns out to be a point on or close to the curve,
then heuristically it would make sense to try a larger steplength on the next iteration. Conversely,
if convergence at the predicted point is slow, or fails entirely, then trying again with a shorter
steplength would be indicated.

We can illustrate some intuition for the interaction of the predictor and corrector steps, and
steplength adaptation strategies, by looking at the PC method as applied to auxiliary games.14 Be-
cause we know that there are no turning points in an auxiliary game, we can simplify the exposition
by taking λ as the parameter. For each player i and all strategies j and k of player i, we have that

ρij(λ)− ρik(λ) = λ(uij − uik)

ρ′ij(λ)− ρ′ik(λ) = uij − uik

13The arclength can be made finite by instead re-parameterizing the curve via a transformation similar to ν ≡ λ
1+λ ,

referred to humorously in Turocy (2005) as the “Texas” parameterization. Even with this parameterization a fixed
steplength is not satisfying, as the transformation rescales the regions of the noise/precision parameter on which the
behavior of the LQRE set may be the most interesting, and so an adaptive steplength would still be indicated.

14Although numerical continuation is not necessary in these cases, as the LQRE can be found through direct com-
putation of the formulas, these are useful for building understanding of how PC methods and steplength adaptation
work.
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We can differentiate the requirement that probabilities sum to one for each player to obtain

Ji∑
j=1

ρ′ij(λ)e
ρij(λ) = 0

Ji∑
j=1

[ρ′ik(λ) + (uij − uik)] e
ρij(λ) = 0

ρ′ik(λ) +

Ji∑
j=1

(uij − uik)e
ρij(λ) = 0

ρ′ik(λ) = −
Ji∑
j=1

(uij − uik)πij(λ) (19)

The significance of (19) is that, given (λ, ρ(λ)), it is used to predict the next point (λ+h, ρ̂(λ+h)).
We now observe that this predictor is quite good, in that the predictor always satisfies the relative-
payoff equation exactly:

ρ̂ij − ρ̂ik =

[
ρij − h

Ji∑
l=1

(uil − uij)πil

]
−

[
ρik − h

Ji∑
l=1

(uil − uik)πil

]

= ρij − ρik + h

[
Ji∑
l=1

(uij − uik)πil

]
= λ(uij − uik) + h(uij − uik)

= (λ+ h)(uij − uik).

The predictor is not perfect because the system is not linear in log-probabilities; the sum-to-one
equations for each player do not balance exactly when using this predictor. The Newton step in
the corrector recognizes this, and takes a step that re-scales the total probabilities while keeping
the relative log-probabilities in their correct proportions. In fact the corrector phase needs only
one step to find a point on the curve, as the step will always complete the normalization exactly on
the first iteration. Because the convergence is so rapid, this is evidence that the steplength can be
increased, and so traversal of the curve can proceed using relatively few steps. The PC method is
therefore surprisingly competitive for computing the LQRE of auxiliary games when compared to
solving the equations directly, as it does more or less the same computational operations.

However, because the problem of computing a Nash equilibrium is PPAD-complete, we know
that there must be games for which the PC method will not work as elegantly as this. The running
time of the PC method is determined by the number of steps it must take, and the computational
time involved in taking one step. We consider these in turn.
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At a given point m(s), the tangent ∇m(s) used to form the predictor incorporates two effects,
which we can think of as the payoff effect and the strategic effect.15 The payoff effect is de-
termined by applying the replicator dynamics, which as we have just seen, is well-predicted by a
linear approximation in log-probabilities. The strategic effect comes from the adaptation of each
player’s play to the anticipated play of others. The predictor step operates, roughly, by assuming
that the strategic effect at m(s) is a good approximation to the effect at m(s + h). The extent
to which this is true will influence the steplength adaptation, and therefore the number of steps
needed; this is different across games, and even at different parts of the LQRE correspondence for
a given game.

Irrespective of how the number of steps required by the PC method depends on the features of a
game, an important practical determinant of running times is the time it takes to complete a step. It
is important to remember that for practical application, it is not necessarily the case that algorithms
with running times that scale exponentially in the size of their input are necessarily impractical and
those which scale polynomially are practical; an exponential algorithm with running times growing
slowly over the range of problem sizes of interest may beat a polynomial one with running times
growing more rapidly over the range. The PC method requires information both about the function
H(m(s)) defining the curve, and its Jacobian H ′(m(s)), at each of the points m̂kt considered as a
predictor or corrector. The method then does linear algebra to compute the relevant tangent for the
predictor step, and steps for the correctors. These operations are done on matrices of size J × J

and J × (J + 1), so the total number of strategies J is the determinant of the complexity of this
part of the algorithm.

However, experience with implementing the PC method in Gambit (McKelvey et al., 2022) has
shown that it is neither the number of steps nor the linear algebra at each step which dominates
the running time. Instead, the overwhelming majority of computational time is spent computing
expected payoffs. Here, one of the attractive features of LQRE, that it has full support for all
finite λ, implies a curse of dimensionality. We must visit all

∏n
i=1 Ji contingencies of the game

to compute the expected payoffs of all of player i’s strategies, meaning that the cost of computing
H(m) is proportional to N

∏n
i=1 Ji.

However, in the most generic implementations, it is the Jacobian which consumes most of the
computational cycles. For each of the Hij equations, computing the Jacobian precisely implies:

1. Computing ∂Hij

∂λ
.

2. Computing ∂Hij

∂ρlm
for every player l ̸= i and every strategy m of that player l;

These two items correspond precisely to the payoff effect and the strategic effect, respectively.
15This builds off of the observations in Turocy (2005) relating LQRE tracing to the Tracing Procedure of Harsanyi

and Selten (1988).
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The column of the Jacobian consisting of ∂Hij

∂λ
is exactly the replicator dynamics, evaluated at

the current vector of strategy payoffs. The columns with the derivatives with respect to strategy
probabilities capture the changes in strategy values. Here we can exactly pinpoint one of the ways
in which the empirical payoff approach saves computational time: it sets all of those cross-partials
with respect to strategies to zero. In the simplest implementation of expected payoff calculations,
this saves visits to

∑n
i=1

∑
k ̸=i(Ji + Jk)

∏
l ̸=i,k Jl contingencies in the game16 for each step of the

PC method.

This analysis indicates that the feasibility in practice of using the equilibrium correspondence
approach is closely tied to the computation of the Jacobian. We now discuss some techniques
which can be used to improve the performance of estimation, in some cases by many orders of
magnitude.

5.1 Take advantage of the structure of the game

The straightforward way to compute expected payoffs is to visit all the contingencies of the game.
This, for example, is what (as of this writing) Gambit does in its generic implementation of max-
imum likelihood estimation for LQRE. This is always correct, and for some games it is the best
that can be done.

However, many of the games we actually study, and especially those which are subjected to
experimental or empirical analysis, are ones which have some structure in how payoffs are deter-
mined. In applying LQRE, numerical methods are essential because it is only in rare instances
where closed-form expressions for LQRE probabilities can be obtained. These examples can be
linked to cases in which there are substantial efficiency gains to be had in computing the Jacobian.

One example is the all-pay auction, analysed by Anderson et al. (1998a) in a continuous-bid
format. A property of the all-pay auction that permitted this analysis is that the difference in
expected payoffs between two adjacent bids in the strategy space is very easy to compute. To fix
ideas, suppose the set of feasible bids is a discrete set {b0, b1, . . . , bJ}. In the two-bidder case, the
derivatives of the equation Hij relating the probability of bidding bj to that of bidding bj+1 are
all zero, except for the columns corresponding to other bidder(s) bidding those bids. A custom
implementation of the Jacobian can thus get enormous speedups. Other games, such as the “11-
20 game” of Arad and Rubinstein (2012), have a similar structure. We observe that a similar
observation applies to first-price auctions. First-price auctions typically are modeled as Bayesian
games; the predictor-corrector approach described above applies equally to the agent LQRE of
McKelvey and Palfrey (1998), and the resulting Jacobian will be sparse for the same reasons.

Anderson et al. (1998b) provided an analysis of voluntary contributions public goods games

16Where the product over an empty range is defined by convention to be 1.
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using LQRE. In the linear case, in which the cost of contribution is linear in the size of contri-
bution, and the benefit from contribution is constant, then, as noted previously, the cross-partial
derivatives in the Jacobian are constant. This arises from the linear separability of benefits and
costs. Therefore, they are also able to analyse the case of quadratic, but still separable, costs.

The benefits of custom routines for computing expected payoffs are not always so dramatic.
In computing, it frequently can make practical sense to trade off computational time for the time
of people writing custom code, as the implied cost of the latter is high. However, the Jacobian
is the critical path in a PC method, and so investing in more efficient implementation therefore is
often worth it. Computational libraries in other domains increasingly do introspection in order to
optimise an execution plan (for example, database engines do this to optimise query plans). Similar
techniques may be applicable to automate the discovery of ways to compute expected payoffs in a
given family of games with a minimum of computational operations.

5.2 Approximate the Jacobian

It may not always be practical to analyze a game to determine the optimal approach for computing
the Jacobian. Further, in some games, there might be little opportunity to do so. Consider for
example a second-price auction with private information and correlated types or values. Unlike the
first-price and all-pay auctions, in the second-price auction the expected payoff to a bid depends on
the probabilities of all of the bids below it, because conditional on winning any of those lower bids
could be the one that sets the price the winner pays. The task is further complicated by correlation
among types and any common value component, meaning that inferring the value of the object
conditional on winning, given that all types follow a strategy that has full support over all possible
bids, is complicated. Clever computational tricks in the Jacobian will have only limited benefit in
such settings, and custom code will be prone to errors which are difficult to detect.

There are some interesting observations which arise from consideration of the role of the Ja-
cobian in a PC method. At the predictor step, H ′(m) is important because it is the information
required to compute ∇m, which determines the direction of the step. However, because there is a
subsequent corrector step, all that is important about the predictor step is that it is “good enough”
that the corrector step is then able to converge. Further, the corrector step also does not require an
accurate Jacobian. The quadratic convergence rate of a Newton-type iteration does assume access
to the Jacobian at each iteration. However, less accurate estimates of the Jacobian in general only
slow convergence, but do not destroy it; the secant method for finding a root, for example, requires
only H(m), not H ′(m), at the cost of convergence taking more iterations.17

17In fact, the PC method implemented in the ancillary materials for this paper computes the Jacobian at the predictor,
and uses that resulting Jacobian as an approximation to the true Jacobian for the corrector iterations.
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As an alternative, there are variations on the PC method which use the information obtained
from evaluations of H(m) to maintain an approximation to the Jacobian. One such implementation
is given by Allgower and Georg (2003). The basic idea is that, given an initial value of the Jacobian
at some point, that value can be updated using the information already computed by taking a
predictor step. This update is only an approximation, as it uses just a fraction of the information
that is contained in the full Jacobian. In the electronic auxiliary materials with this paper we
include a sample implementation in Python of such a method, based on the code of Allgower and
Georg (2003).18

There is an inherent tradeoff between using a Jacobian-approximation method versus one in
which it is computed exactly. The more precise the Jacobian is, the more accurate the predictor
step will be, and therefore longer steps can be taken. With an approximated or estimated Jacobian,
shorter steps will be taken, but each step will be computationally less expensive.

5.3 Approximation methods

As we have already observed, computing the Jacobian requires computing ∂uij

∂πlm
, for all pairs of

players i, l ∈ N and all pairs of their strategies j ∈ Si and m ∈ Sl. In the case of two player
games in normal form, this is a constant. Therefore, the only variable part of the Jacobian is the
column corresponding to ∇λH(m). Each of these entries is just the difference of the expected
payoffs of two strategies, and those expected payoffs are already required for computing H(m).
It follows that for two-player games, no extra computational work is required to provide an exact
Jacobian at every step. This observation extends to computing the Jacobian of agent LQRE for
Bayesian games. This observation suggests that for two-player games, computational feasibility is
never, or at most very rarely, a justification for the empirical payoff method, and the equilibrium
correspondence approach should always be used.

This special property of the Jacobian is also enjoyed by polymatrix games (Janovskaya, 1968;
Howson, 1972). In a polymatrix game, the payoff to player i from choosing strategy j against a
given pure strategy profile s can be written in the form

uij(s) =
∑
l ̸=i

vil(j, sk). (20)

In other words, the game can be expressed as a set of bimatrix games between each pair of players
i and l, with payoff function vil.

Approximation by polymatrix games has been used to good effect in computing Nash equilib-

18There are definitely errors in the code published in Allgower and Georg (2003). We believe we have corrected at
least some of these in the sample codes, but the code does come with the disclaimer that it is for illustrative purposes
only.
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ria. Govindan and Wilson (2003) introduced a path-following global Newton method to compute
equilibria. Briefly, the idea of the method is to perturb the payoffs of the game such that there
exists a unique and easy-to-find equilibrium, such as one in which all players have a strictly dom-
inant strategy. Then, the structure theorem for Nash equilibrium can be exploited to trace along
the set of equilibria back to the original game of interest. This method is intuitively appealing, but
comes with some implementation subtleties and can be quite slow. Govindan and Wilson (2004)
subsequently introduced a complementary approach, which approximates the game by a sequence
of polymatrix games; they find that when method based on polymatrix approximations converges,
it typically finds equilibria much faster than the global Newton method.

These considerations suggest a computational strategy for games with more than two players,
which can incorporate some of the ideas in the empirical payoff approach without throwing out
entirely the strategic information of a game. If Jacobian-approximation methods are not suitable
because the updating of the approximation is too poor to permit step sizes to be increased, one
can approximate the game by treating it as a polymatrix game, in which, following the idea of
Govindan and Wilson (2004), the payoff matrices for each pair of players are determined by taking
expected values given the empirical strategy frequencies of the other n − 2 players. This method
retains the computational advantages of two-player games - that computing expected payoffs can
be organised quite efficiently by row and column multiplications, and that the Jacobian matrices
require only filling in one column based on those expected payoffs - while also incorporating a
first-order approximation to the strategic aspects.

6 Discussion

We have extended the discussion of the empirical payoff approach to estimating LQRE presented
in Goeree et al. (2016) by providing the first systematic analysis of the approach’s properties.
We have focused principally on 2 × 2 games. Although the empirical payoff approach is not
necessary computationally for these simple games, they are nevertheless rich enough to illustrate
the systematic differences between the empirical payoff approach and the equilibrium correspon-
dence approach. We have isolated and illustrated several important differences between the two
approaches.

1. The results of the empirical payoff approach are sensitive to small movements in observed
data in regions of the space of mixed strategy profiles where the ordering of strategies by
their expected payoffs change. This is in particular a concern in games in which active ran-
domization is behaviorally relevant, including when there are equilibria in which randomized
strategies are played.
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2. The comparative statics of the strategy profiles, and values of the precision parameter λ,
as estimated by the empirical payoff approach, may be counterintuitive. Along a sequence
of strategy frequencies which equilibrium analysis suggests is increasing in precision, the
empirical payoff approach can actually claim behavior is becoming less precise. This arises
in part because the LQRE correspondence used by the empirical payoff approach is generally
not a good approximation to the correspondence of the original game.

3. Even in games in which the locus of LQRE of the original game is sufficiently simple that
the empirical payoff approach’s approximation is not too bad, there remain systematic biases
in the estimates of the precision parameter λ. The direction of the bias is game specific:
although in most games the tendency is for the empirical payoff approach to underestimate
the precision of play, counterexamples can be constructed where the systematic bias is to
overestimate precision.

The root of all of these differences is the way the empirical payoff approach approximates the
incentives in the game. Compared to the information available in the game, the empirical payoff
approach uses just one small piece of information: the expected payoffs associated with each strat-
egy against the sample of play. The implications of using such coarse information, and discarding
the information carried by the original game, is illustrated by the structure of the Jacobian of the
system of equations defining the LQRE correspondence: the entries associated with the strategic
structure are set to zero, leaving only the replicator dynamics component of LQRE.

Our results show that even for moderate-sized datasets, the empirical payoff approach does
not produce particularly satisfying results. Perhaps the most important achievement of McKelvey
and Palfrey (1995) in defining the quantal response equilibrium is that it incorporates both quantal
response and equilibrium. The empirical payoff approach discards the latter. To say that one
“estimates QRE using the empirical payoff approach” therefore borders on an oxymoron; what is
returned by the empirical payoff approach is not necessarily even approximately an equilibrium of
the base game.

Nevertheless, the motivation of wanting to approximate QRE that underpins the empirical pay-
off approach does have valid roots in computational complexity. The empirical payoff approach
merely goes too far, discarding too much important information about the game. Practical analy-
sis of predictor-corrector methods for computing points on the LQRE correspondence sheds light
on where improvements can be made. The empirical payoff approach approximates the Jacobian
of the system by zeroing out most elements. Instead, approaches based on various heuristic ap-
proximations would seem promising, allowing at least some of the strategic information of the
game to be incorporated properly into estimations. It is also worth noting that if the objective
of a tracing of the correspondence via numerical continuation is solving the maximum likelihood
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problem, algorithms can use a greater tolerance for the precision of computing exactly the zeroes
of the equations until a critical value of the likelihood function is being approached. The toolkit
of numerical continuation - with proper tuning of the hyperparameters of algorithms - is a more
promising approach to estimation and, combined with the modern scientific computing ecosystem,
should render the empirical payoff approach in its current form obsolete.

We note in closing that our discussion of the computational aspects of tracing a branch of the
LQRE correspondence is motivated by its practical relevance in taking LQRE to data as a structural
model, and so we have not covered comprehensively all of the finer points involved in producing
production-quality implementations. One issue which can catch out naive implementations of
LQRE estimation code is bifurcations in the graph of LQRE. Goeree et al. (2016) mention this in
the context of a battle-of-the-sexes game. Although the results of McKelvey and Palfrey (1995)
show that generically bifurcations do not occur, in applications of game theory we do not choose
the games we study randomly. As a result it is not particularly uncommon in applications for
games with multiple equilibria to exhibit bifurcations. Goeree et al. (2016) assert (p. 153, footnote
9) that a “path-following algorithm ... generally runs into problems when the bifurcation value
of λ is reached.” We can briefly make this statement more precise, and offer a more optimistic
view. Taking the battle-of-the-sexes example, the bifurcation point is where two curves in L(Γ)
intersect. Looking at each curve in isolation, the tangent to the curve changes continuously when
passing through that point. When the PC method passes through such a point in tracing a curve,
the most common outcome is that it continues “straight through” the bifurcation. However, this
event can easily be detected, because when passing through the bifurcation point, the sign of the
tangent vector reverses.19 The identification and numerical analysis of bifurcation points is a well-
developed area;20 Allgower and Georg (2003) provide a brief outline of some of the standard
techniques for incorporating bifurcation analysis into PC methods.

19A common bug in home-grown PC code is that it does not check for the change in sign. Doing so results in the
path following converging to, and getting stuck at, the bifurcation point. This behavior is a bug in the implementation,
and not a problem inherent with numerical continuation.

20The study of bifurcation points is driven, for example, by the study of systems of equations corresponding to
physical systems; in some of those applications, bifurcations can correspond to qualitative differences in the behavior
of the system. The structure of bifurcations in general systems of equations can be quite complex; however, at least in
the examples we are aware of, the bifurcations arising in LQRE correspondences are of relatively simple types.
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