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Abstract

In all-pay auctions with affiliated types, the implications of being of a “higher” type can be com-
plex. Having a high assessment of the value of the prize is good news, but only if the other partic-
ipants in the contest are not too likely also to have high assessments. If anticipated competition is
strong, it is not clear whether a high or low bid will be a best response. In a laboratory experiment,
we study behavior in both private-values and common-values settings with two contestants. We
find general support for the comparative statics of Bayes-Nash equilibrium for private values. In
contrast, behavior in common values settings in which bidders have very noisy information about
the value of the prize differs greatly from the equilibrium predictions.

JEL Classifications: D44; D82; D72.
Keywords: contests, all-pay auctions, mixed strategies, affiliation, monotonicity.



1 Introduction

Atque utinam posses uni mihi bella videri!
Displiceas aliis: sic ego tutus ero.

And would that you could seem beautiful to me alone!
May you displease others: thus I will be safe. - Tibullus 3.191

In this poem, Tibullus invokes an age-old trope of the romantic genre: The lovelorn youth,
thinking of the object of his desires, wishes that other potential suitors would not find “his” girl
attractive. The contest for her affections, then, would be less competitive, and he would not be
faced with the decision whether to pursue her actively, or, as the poem continues, to risk envying
the rival who might instead win her hand.2

Similar strategic reasoning applies in situations of economic interest. Consider an entrepreneur
who is developing a product to enter a new market. Suppose that there will be network effects
in this market so that the first entrant to the market is likely to obtain a dominant position and
that higher research and development expenditures can hasten entry. If the entrepreneur observes
information that suggests that the demand in the market is likely to be high, other things equal
this makes competing to be the first entrant attractive. However, if the entrepreneur believes other
potential entrants are likely to have made similar assessments, this information may be bad news,
as it increases the risk of paying out those expenditures without winning the contest in the end.

These considerations distinguish contests such as the all-pay auction from winner-pay auction
games. In a winner pay auction with affiliated types, having a “higher” type generally implies
higher optimal bids, even if types are highly correlated, as the bid only needs to be paid condi-
tional on winning. In the all-pay auction, the possibility of facing stiff competition makes low
bids potentially attractive; low bids have a small probability of winning but cost little if they are
unsuccessful.

In the all-pay auction with affiliated types drawn from a continuum, Krishna and Morgan
(1997) provided a condition for the equilibrium to be monotonic in type. This condition, roughly
speaking, requires that types are “not too affiliated;” that is, that the good news of having a higher
type is not canceled out by the bad news that the contest is likely to be competitive. In the case of
discrete types, Siegel (2014) proves a similar monotonicity result using the discrete analog to Kr-
ishna and Morgan’s condition, but without other restrictions on the distribution of types. Siegel’s

1The title is a play on an earlier line in this poem. The original line is Tu mihi sola places, “You alone please me.”
Our title means instead, “You are pleasing to me alone.”

2While modern sensibilities may find this characterization of courtship to be at best inappropriate, there are many
historical periods and cultures in which male suitors have framed the pursuit of a mate in such terms.
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result formalizes the intuition that the conditions for monotonicity in all-pay auctions are distinct
from those in winner-pay auctions (e.g., affiliation as in Milgrom and Weber 1982).

In all-pay auctions where the equilibrium is not monotonic, bidders face, roughly, the choice
between “going for it” with a relatively high bid, or playing safe with a low one. Rentschler and
Turocy (2016) provide a complete characterization of equilibria in the two-bidder case, including
examples of equilibria with complex structures involving randomization over disjoint intervals of
bids. The construction in Rentschler and Turocy also demonstrates that the complexity of the
process of computing an equilibrium can be much higher in settings where the equilibrium is not
monotonic.

All-pay auctions with discrete types generally have equilibria in mixed strategies. By their
nature mixed-strategy equilibria depend sensitively on the assumption that all players use best
responses. This presents a challenge to the use of these equilibria as a behavioral prediction. This
challenge is intensified in the case of all-pay auction games without monotonic equilibria, as the
complexity of the equilibria themselves, and of the computational burden in identifying them,
undermines their plausibility as an exact description of behavior.

We design an experiment which asks whether the qualitative prediction embodied by the Krishna-
Morgan-Siegel monotonicity condition nevertheless holds in the presence of non-equilibrium play.
Is it definitely “good news” to have a “high” type when types are not strongly correlated, but less
so (or not at all) when correlation is high? Further, as the monotonicity condition applies equally to
private-values and common-values contests, does the structure of how types related to valuations
make a difference? We find that for private values, it is indeed the case that “high” types do better
when the values are not very correlated, but not when they are highly correlated. However, for
common values, the equilibrium prediction for the effect of accuracy of information is not found
in our data.

The current experimental literature on all-pay auctions with incomplete information is quite
small, and predominantly focuses on the case of independent types. One exception is Grosskopf
et al. (2014), which considers common-value all pay auctions with conditionally independent sig-
nals. The current paper differs in that we vary the degree of correlation, and directly compare
behavior to equilibrium predictions.3 Noussair and Silver (2006) examine an independent private
values environment with six contestants. They find that overbidding is high, such that many par-
ticipants were bankrupt by the end of the session. Hörisch and Kirchkamp (2010) examine both
wars of attrition and all-pay auctions with independent private marginal costs of expenditure, and
also find significant overbidding in all-pay auctions. Müller and Schotter (2010) examine all-pay
auctions with four contestants and either linear or quadratic bidding costs. A multiplicative cost

3Athey (2001) shows that in the symmetric environment studied in Grosskopf et al. (2014) the single crossing
property fails.
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parameter is independently drawn and is private information. In both cost environments, expen-
ditures are bimodal, and, on average, above Nash predictions. Hyndman et al. (2012) vary the
feedback provided to participants to determine whether anticipated regret will affect bidding be-
havior. In an independent private values framework, they find that, regardless of whether on not
the winning expenditure is revealed, bids are, on average, above Nash predictions. However, this
tendency is even more pronounced when the winning bid is revealed, suggesting that anticipated
regret may have an effect on behavior.

The remainder of the paper is organized as follows. Section 2 describes the theoretical frame-
work we study. Section 3 details our experimental design. Section 4 presents our results, and
Section 5 contains a discussion of these results.

2 Theory

The general framework follows that used in Krishna and Morgan (1997), Siegel (2014), and
Rentschler and Turocy (2016). There are two contestants who compete for a single, indivisible
prize. Each contestant has a type drawn from a set T , which is their private information; in our
experiment, we specialize to the case of two types, with T = {tL, tH}. After observing their types,
contestants simultaneously submit non-negative bids. Each bid is irrevocably sunk, but only the
bidder with the higher of the bids wins the prize. In the event of a tie, the winner is determined by
a fair randomization.

A bidder’s valuation of the prize may depend on both her and her opponent’s types. If a bidder’s
type is tk ∈ T and the opponent’s type is tl ∈ T , the posterior expected value of the prize is Vk,l.
Given that a bidder is of some type tk ∈ T , the conditional probability that the other bidder is type
tl ∈ T is hl|k.

We consider symmetric Bayes-Nash equilibria. Rentschler and Turocy (2016) show that all
symmetric equilibrium will involve piecewise uniform randomization for both types, and that there
will be no atoms in the distribution of bids for either type. We denote such a behavior strategy as
π, which assigns to each type tk ∈ T a corresponding probability density function πk over bids.
The expected monetary payoff to a contestant of type tk who bids b against an opponent who plays
according to behavior strategy π is

uk(b|π) =
∑
l:tl∈T

hl|kVk,l

[∫ b

0

πl(b)

]
− b

where ties are neglected because they occur with zero probability. For notational compactness we
write ψl|k ≡ hl|kVk,l, which defines a matrix ψ with rows indexed by tl and columns by tk.

Siegel (2014) showed that the qualitative properties of the Bayes-Nash equilibria of this game
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depend on the structure of the matrix ψ. Specifically, if the entries of each row are strictly mono-
tonic, then there is a unique Bayes-Nash equilibrium which is stochastically monotonic. In our
setting, stochastic monotonicity means that all bids submitted by type tH are greater than those
submitted by type tL.

The monotonicity condition on ψ ensures that being of type tH is unambiguously “good news”
for the bidder, relative to being of type tL. The dependence of ψ on both the posterior expected
value and the conditional probabilities of the opponent’s type distinguishes this condition from the
case of the (winner-pay) first-price auction, in which affiliation of values is a sufficient condition for
monotonicity of the equilibrium (Milgrom and Weber, 1982; Wang, 1991). Krishna and Morgan
(1997) note that the monotonicity condition rules out the case of values which are “too affiliated.”

Our experimental design contrasts, in one dimension, the case in which receiving the higher
type is unambiguously good news with the case in which the monotonicity condition is violated by
values which are strongly positively correlated. In our environment, there are two possible states of
the world, drawn from Ω = {ωL, ωH} with equal probability. The state of the world is not revealed
directly to the contestants. Instead, conditional on the state being ωL, each contestant’s type is tL
with probability p, and tH with probability 1 − p; similarly, if the state is ωH , each contestant’s
type is tH with probability p and tL with probability 1 − p. The realization of contestant types is
done independently, conditional on the underlying state.

The monotonicity condition does not directly restrict how types map into valuations. In a
second dimension our design contrasts the case of pure private values with pure common values.
With private values, the valuation of a contestant is equal to her type. With common values, the
valuation of a contestant is equal to the state of the world. Importantly, the qualitative implication
of the monotonicity condition is the same for both private and common value settings. If p is
sufficiently close to 1

2
, the monotonicity condition is satisfied, and the resulting equilibrium is

stochastically monotonic. If p is sufficiently close to 1, the monotonicity condition is violated, and
in equilibrium a contestant of type tH will lose to one of type tL with positive probability.

In this setting, the matrix ψ is

ψ =

[
[p2 + (1− p)2]VL,L 2p(1− p)VH,L

2p(1− p)VL,H [p2 + (1− p)2]VH,H

]

Monotonicity of the second row of the matrix follows if VH,H > VL,H ; therefore, in order for the
equilibrium to be monotonic, the parameters must satisfy

VL,L
VH,L

<
2p(1− p)

1− 2p(1− p)
(1)
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For private values, VL,L = ωL and VH,L = ωH , and so

ωL
ωH

<
2p(1− p)

1− 2p(1− p)
(2)

For common values, the conditional posterior values are given by

VL,L
VH,L

=
2

p2 + (1− p)2
× p2ωL + (1− p)2ωH

ωL + ωH
. (3)

Combining (1) and (3) and simplifying gives

2

p2 + (1− p)2
× p2ωL + (1− p)2ωH

ωL + ωH
<

2p(1− p)
1− 2p(1− p)

ωL
ωH

<
1− p
p

. (4)

To jointly satisfy (2) and (4), in our experiment, we choose ωL = 15 and ωH = 30. For private
values, (2) requires p < 1

2
+
√

1
12
≈ 0.789 for the equilibrium to be monotonic, and for common

values (4) requires p < 2
3
.

We choose p = 0.6 for low correlation treatments, in which the equilibrium prediction is
stochastically monotonic, and p = 0.9 for high correlation treatments. In what follows we refer
to private value environments with low correlation between types (p = 0.6) as the LPV case.
Similarly, we refer to private values with a high degree of correlation (p = 0.9) as the HPV case.
When the valuation structure is common-value we use LCV and HCV for the case of p = 0.6 and
p = 0.9, respectively.

Calculation of the equilibria for each condition is straightforward using the results in Rentschler
and Turocy (2016). For the LPV case, the equilibrium behavior strategy is given by

πLPVL (b) =

 5
39

if b ∈
[
0, 74

5

]
0 otherwise

πLPVH (b) =

 5
78

if b ∈
[
74
5
, 232

5

]
0 otherwise.

Note that, since the monotonicity condition is satisfied, the supports of the two equilibrium den-
sities do not overlap. As such, the high type will win with probability one when pitted against an
opponent of the low type. The high type earns a positive expected payoff, while the low type’s
expected payoff is zero.
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Turning attention to the HPV case, the equilibrium behavior strategy is

πHPVL (b) =

 73
960

if b ∈
[
0, 1311

73

]
0 otherwise

πHPVH (b) =


23
960

if b ∈
[
0, 1311

73

]
5

123
if b ∈

[
1311

73
, 30
]

0 otherwise.

Note that the support of the high type’s density now overlaps with that of the low type. As a result,
the high type will now lose to the low type with positive probability. Also, since zero is in the
support of πHPVH , the corresponding equilibrium expected payoff is also zero. Additionally, note
that relative to the LPV case, the upper bound of the support of the high type’s density is higher.
Thus, the high type is indifferent between bidding very aggressively (“going for it”), and bidding
very cautiously.

In addition to the LPV and HPC cases, we also consider the case of independent private values
(IPV), in which p = 0.5. Under independent private values the equilibrium behavior strategy is

πIPVL (b) =

 2
15

if b ∈
[
0, 71

2

]
0 otherwise

πIPVH (b) =

 1
15

if b ∈
[
71
2
, 221

2

]
0 otherwise.

Note that equilibrium behavior in the IPV case is qualitatively similar to that of the LPV case. We
opted to study the IPV case because we were concerned that conveying the concept of correlated
types to our experimental subjects would be a challenge. By including the IPV case, we have a
benchmark case with uncorrelated types we can compare the LPV case to. If behavior does not
dramatically deviate between these two cases, despite one having (weakly) positively correlated
types, we can be guardedly optimistic that subjects understood how we introduced the positive
correlation. Another reason to include the IPV case is that this parameterization allows us to
benchmark our results against the results of Noussair and Silver (2006).

Turing attention to environments with common values, the equilibrium behavior strategy for
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PV CV

IPV LPV HPV LCV HCV
p = 0.5 p = 0.6 p = 0.9 p = 0.6 p = 0.9

Mean bid of tL 3.75 3.90 6.58 5.10 7.06
SD bid of tL 2.17 2.25 3.80 2.94 4.08

Mean bid of tH 15.00 15.60 16.85 16.80 15.44
SD bid of tH 4.33 4.50 4.53 3.78 4.12

Mean bid of tH - Mean bid of tL 11.25 11.70 10.27 11.70 8.38
Higher type wins 100% 100% 84.2% 100% 79.4%

Table 1: Summary of equilibrium predictions.

the LCV case is

πLCVL (b) =

 5
51

if b ∈
[
0, 101

5

]
0 otherwise

πLCVH (b) =

 5
66

if b ∈
[
101

5
, 232

5

]
0 otherwise.

Predicted behavior is qualitatively similar to that of LPV. Equilibrium behavior is stochasticly
monotonic in type, the low type has an expected profit of zero, while that of the high type is
positive. However, notice that the upper bound of the support of πLCVL is higher than that of πLPVL .
This is driven the uncertainty regarding the value of winning in the LCV case.

For the high correlation common-value case the equilibrium behavior strategy is

πHCVL (b) =

 17
240

if b ∈
[
0, 14 2

17

]
0 otherwise

πHCVH (b) =


7

240
if b ∈

[
0, 14 2

17

]
20
489

if b ∈
[
14 2

17
, 281

2

]
0 otherwise.

Behavior in the HCV case is not predicted to substantially differ from t hat of the HPV case. Both
types have an expected payoff of zero; the high type is not better off than the low type. Further,
equilibrium behavior is not stochastically increasing in type.

Table 1 summarizes the key quantities predicted by the Bayes-Nash equilibrium for all five
parameterizations, which we will use as the basis for our subsequent data analysis.
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3 Experimental design

We report on a total of twenty-five experimental sessions conducted at Universidad Francisco Mar-
roquı́n. Each session used eight participants drawn from the subject pool maintained by Centro
Vernon Smith de Economı́a Experimental. None of the subjects participated in more than one
session, and none had prior experience in contest games. All interaction was mediated via com-
puter, and no participant IDs or other identifying information was available regarding the other
participants in a session.4

We vary treatments between sessions. There are a total of five treatments, which vary whether
the prize had a private or common value, and the correlation between types. We conducted five
sessions for each treatment. Within a session, participants were paired at random at the start of
the session, and remained in the same pair throughout the session. Therefore, we have twenty
independent observations at the session-pair level.

There were forty periods in a session. In each period, the contestants participated in an all-pay
sealed-bid auction. Each received a type drawn from the set {15.00, 30.00}.5 We used the same
realizations of types and states of the world for each session within a treatment.

At the beginning of each auction period, participants’ computer screens displayed their type
and a five second countdown clock. After the countdown participants could select a bid using a
slider device.6 Bids could be submitted in units of 0.30.7 Bids were specified by clicking a point
along the slider, and then confirming with a button click. The period lasted at least forty seconds,
or until five seconds after the last contestant had submitted her bid. The results of the auctions
were displayed for fifteen seconds, after which the next period began.8

We extended the feedback mechanism employed for winner-pay auctions by Turocy and Cason
(2015) to the case of all-pay auctions. In addition to providing feedback in the same graphical
frame as used by the participant to choose a bid, the feedback screen also provided information
on the results of the auction from the perspective of the other participant. Figure 1 shows sample

4The full text of the instructions, as well as translations from the original Spanish, is available as a separate
appendix.

5All types, bids, and earnings were expressed directly in Guatemalan Quetzales; we avoided the use of in-lab
currency units and associated exchange rates.

6This device was used previously in winner-pay auctions in Turocy et al. (2007), Turocy and Watson (2012), and
Turocy and Cason (2015).

7We selected the granularity of the type and bid spaces to be fine enough that ties in bids would be relatively
unlikely, making the continuous approximation reasonable. The equilibrium in the discrete game exhibits a “sawtooth”
alternation in the probabilities assigned to alternate bid levels, similar to that shown in discrete Blotto games by Hart
(2008). We neglect this alternation and use the continuous equilibrium as our baseline, but our results would be
unchanged by using the discretized equilibrium.

8We designed this pacing of the auction periods to control for the participants’ opportunity cost of time, as no
participant could make the session conclude faster by making choices faster, as well as to make the private type and
the feedback process salient. Few contestants took more than forty seconds to submit a bid in any period.
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(a) Positive earnings (b) Negative earnings

Figure 1: Structure of feedback for a typical period.

screenshots with typical outcomes in the cases of positive and negative profit by the contestant
after winning the auction.

Participants also had on their screen a record sheet showing the complete history of all auctions
they had participated in so far. This record sheet was displayed at all times, including while the
participant was choosing a bid, while waiting after making a choice for the period to complete, and
during the feedback interval between periods.

Participants received an initial balance of Q120.00 ≈ US$15.67. At the end of the session, ten
out of the forty periods were selected at random for payment. Therefore, a string of negative earn-
ings in early periods would not necessarily cause bankruptcy, eliminating a design complication
which can arise both in winner-pay common-value experiments as well as contests more generally.
The initial balances were set large enough that the chances of negative total earnings were small,
even under assumptions of very aggressive expenditure choices. In the event that the ten selected
periods resulted in a negative balance, participants received no money for the session.9 On average,
participants earned Q100.83, for sessions which lasted just over an hour, inclusive of instructions.

4 Results

We begin with a comparison of aggregate distributions of bids against the benchmark equilibrium
prediction of piecewise-uniform randomization. Figure 2 presents cumulative empirical distribu-

9Only 8 of the 200 participants left with zero earnings: three in LCV, three in HCV, and one each in LPV and
HPV.
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PV CV

Quantity Statistic IPV LPV HPV LCV HCV
p = 0.5 p = 0.6 p = 0.9 p = 0.6 p = 0.9

Mean bid of tL Median over pairs 6.48 7.23 10.16 11.13 10.10
Pairs > NE 17** 19*** 16** 18*** 15*

SD bid of tL Median over pairs 4.94 5.20 4.88 6.61 5.20
Pairs > NE 19*** 18*** 15* 20*** 14

Mean bid of tH Median over pairs 19.23 19.47 20.49 16.54 19.24
Pairs > NE 19*** 17** 16* 7 12

SD bid of tH Median over pairs 5.56 6.08 7.65 6.37 7.91
Pairs > NE 16* 17** 18*** 19*** 19***

(Mean bid of tH - Median over pairs 12.80 12.14 11.48 4.47 6.92
Mean bid of tL) Pairs > NE 11 11 11 0*** 7

Higher type wins Mean over pairs 91.3% 86.2% 79.5% 70.8% 78.6%

Sum of bids Median over pairs 26.54 26.73 32.31 26.76 30.39
Pairs > NE 19*** 18*** 16* 13 15*

Earnings of tL Median over pairs -2.46 -2.38 -3.43 -3.45 -3.22
Pairs > 0 3** 3** 5* 5* 6

Earnings of tH Median over pairs 2.06 0.53 -4.60 -1.07 -4.56
Pairs > 0 16* 12 4** 7 6

Table 2: Comparison of observed quantities against equilibrium predictions. The unit of indepen-
dent observation is the pair; there are 20 independent pairs per treatment. For the test of whether
the median value is different from the Nash equilibrium prediction, * denotes significant at 5%, **
at 1%, and *** at 0.1%.

tions of bids for private values treatments, and 3 the same for common-values. For all treatments,
we present the distributions separately for the first 20 periods (first half) and last 20 periods (second
half) of the experiment. The benchmark equilibrium distributions are provided for reference.

Some general patterns emerge from the overall distributions. Bidding is generally more aggres-
sive than the equilibrium prediction in all treatments, throughout the course of the experiments.
There is some evidence of adjustment, in that bids distributions in the second half are generally
closer to the equilibrium prediction than in the first half, with convergence in IPV and HPV for
tL being visually notable. Bids in private values treatments show substantial responsiveness to
type, with bid distributions for tH being well to the right of tL. Bids in common values treatments
are less responsive to type, especially in the LCV treatment, which contrasts with the equilibrium
prediction of bidding monotonic in type.

We turn to a formal quantitative analysis. Each pair of bidders remained matched throughout
the experiment. We therefore use the pair as the unit of independent observation, and conduct
statistical testing accordingly. We present a summary of each participant’s bid distributions in
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(f) HPV, last 20 periods

Figure 2: CDF of expenditures, first 20 periods versus last 20 periods, private values
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(d) HCV, last 20 periods

Figure 3: CDF of expenditures, first 20 periods versus last 20 periods, common values
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(a) IPV

(b) LPV

(c) HPV

Figure 4: Bidder-by-bidder boxplots of distribution of bids, private values treatments. The behavior
of each bidder is summarized by two adjacent boxplots, corresponding to her behavior when she
was the low type (light grey) and when she was the high type (dark grey). Bidders are sorted from
left to right by average payoffs across the 40 periods of the experiment, with relatively low payoffs
on the left.
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(a) LCV

(b) HCV

Figure 5: Bidder-by-bidder boxplots of distribution of bids, private values treatments. The behavior
of each bidder is summarized by two adjacent boxplots, corresponding to her behavior when she
was the low type (light grey) and when she was the high type (dark grey). Bidders are sorted from
left to right by average payoffs across the 40 periods of the experiment, with relatively low payoffs
on the left.
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PV CV

Quantity Statistic IPV LPV HPV LCV HCV
p = 0.5 p = 0.6 p = 0.9 p = 0.6 p = 0.9

Mean ∆bid of tL Median over pairs -1.89 -2.78 -2.48 -0.26 -4.43
Pairs < 0 19*** 14 17** 11 16*

Mean ∆bid of tH Median over pairs -3.00 -1.19 -2.43 -0.60 -4.42
Pairs < 0 16* 13 14 11 13

Table 3: Comparison of mean bids by type in second half versus first half of experiment. The unit
of independent observation is the pair; there are 20 independent pairs per treatment. For the test of
whether the median value is different from the Nash equilibrium prediction, * denotes significant
at 5%, ** at 1%, and *** at 0.1%.

Figure 4 for private values and Figure 5 for common values. There is a boxplot for the distribution
of bids with the low type tL = 15 and the high type tH = 30 for each participant.

Table 2 summarizes the observations on the observed measures of behavior for which the equi-
librium benchmarks appear in Table 1.

Result 1. Bids generally exceed the Nash equilibrium prediction across treatments, in accordance

with most results previously reported in experimental contests. Bidders vary their bids more than

the equilibrium randomization predicts.

Support. Table 2 reports summaries bids as a function of type. For each pair, we measure the bids
by computing the mean bid submitted by the participants in the pair when they received the low
type, and when they received the high type. In the table we report the median of these measures
across all pairs, and the number of pairs for which the measure exceeds the Nash equilibrium
prediction. We test the equilibrium prediction by testing the proportion of pairs whose median bid
exceeds the equilibrium prediction. In PV, we reject at 5% the null hypothesis of the equilibrium
prediction for the bids both types in all correlation conditions. In CV, mean bids are greater than
the equilibrium prediction for tL, but not for tH .

Turning to within-participant variation in bids, for each pair we measure the standard deviation
of bids conditional on type by computing the standard deviation of bids conditional on tk for each
bidder in the pair, and then taking the average of those measures. In the table we report the median
of these measures across all pairs, and the number of pairs for which the measure exceeds the Nash
equilibrium prediction. The standard deviation of bids exceeds the Nash prediction for both types
across all treatments but tL in HCV. We therefore conclude that the aggressive average bidding
does not arise solely from a simple upwards shift of bid distributions.

Result 2. Bids are typically lower during the second half of the experiment.
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PV CV

Quantity Statistic IPV LPV HPV LCV HCV
p = 0.5 p = 0.6 p = 0.9 p = 0.6 p = 0.9

Within-bidder monotonicity Mean over pairs 87.7% 87.0% 84.5% 69.3% 77.4%
SD over pairs (2.4%) (2.8%) (2.1%) (2.1%) (2.9%)
Equilibrium 100.0% 100.0% 84.2% 100.0% 79.4%

Table 4: Within-subjects measure of overlap between high-type and low-type bid distributions, by
treatment. Twenty independent observations per treatment.

Support. Table 3 presents measures of adjustment of bids over the course of the experiment. For
each type tk ∈ {tL, tH}, we compute for each pair the mean bid in the last 20 periods when the
participants received type tk, and subtracted the mean bid in the first 20 periods with type tk. The
table reports the median across pairs of these measures, and counts of the number of pairs for
which bids in the second half were lower. For all treatments, we observe a reduction of bids in the
second half in a majority of pairs. The effect is only strong enough to be statistically significant
for both types in IPV, and for tL in both high-correlation conditions HPV and HCV.

Result 3. Stochastic monotonicity of expenditures is rejected in both common and private values.

A fortiori, in common values, expenditures are actually more dependent on type when types are

highly correlated, which is the opposite of the comparative statics prediction of equilibrium.

Support. The most direct test of the prediction of monotonicity is to measure the proportion of
cases in which a bidder with type tL outbids a bidder with type tH . Table 2 provides this measure,
where the proportion is computed for each independent pair, and the average of those pair-level
proportions is reported. The proportion of cases in which tH wins is less than the equilibrium
prediction in all treatments, although this observation is not on its own particularly surprising in
IPV, LPV, and LCV due to the strong equilibrium point prediction of 100%. More instructive is
the comparative static prediction: tH is predicted to win less frequently against tL in HPV relative
to IPV or LPV, and in HCV relative to LCV. With private values, we indeed find that tH wins less
frequently against tL in HPV than in IPV or LPV, although we find a substantial difference between
IPV and LPV. However, with common values, the comparison goes in the direction opposite the
equilibrium prediction: tH wins against tL more often in HCV than LCV.

The empirical winning percentage measure may be picking up heterogeneity across participants
as much as non-monotonicity; some cases in which a type tL outbids type tH could be because the
two participants are using different strategies, even though both participants’ strategies might be
monotonic. We therefore develop a complementary within-participant measure of monotonicity.
For each participant, let BH be their sequence of bids in periods in which they were type tH , and
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Figure 6: Stacked histograms of bids by type in private value environments. Bids by high types
(light grey) are on top, while bids by low types are on the bottom. The equilibrium bid densities
are represented by solid black lines.
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Figure 7: Stacked histograms of bids by type in common value environments. Bids by high types
(light grey) are on top, while bids by low types are on the bottom. The equilibrium bid densities
are represented by solid black lines.

19



0.
2

0.
4

0.
6

0.
8

1.
0

IPV LPV HPV LCV HCV

M
on

ot
on

ic
ity

Figure 8: Beanplots of within-participant monotonicity by treatment.

BL their sequence of bids in periods in which they were type tL. We then pair up each entry in BH

with each entry in BL, and count how frequently the bid from BH is the higher. If a participant
were following any stochastically monotonic strategy, this measure would be 100%. Lower values
provide a measure of the extent of overlap in the participant’s strategy. For each pair, we take the
average of the overlap measures as the measure of monotonicity within the pair. Table 4 presents
the average of this measure across all pairs, as well as the equilibrium predictions. The relative
performance of treatments by this measure is identical to that obtained by directly computing
empirical winning percentages.

The monotonicity condition on ψ encodes the notation that being type tH is unambiguously
better news than tL. In equilibrium in IPV, LPV, and LCV, tH is predicted to receive positive pay-
offs on average. Nevertheless, the “good news” content of tH can be evaluated without expecting
behavior to be in equilibrium. We examine this first by considering the payoffs contingent on each
type.

Result 4. Earnings for type tL are negative for all treatments. Earnings for tH are positive only

with private values and lower correlation of types (IPV and LPV).

Support. Table 2 includes per-period net earnings for each type for all treatments. These are
computed by taking, for each pair, the average earnings of the participants in the pair in periods
in which they received tL or tH , respectively. For tL, we can reject the null hypothesis of zero
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PV CV

Quantity Statistic IPV LPV HPV LCV HCV
p = 0.5 p = 0.6 p = 0.9 p = 0.6 p = 0.9

π?(tH)− π?(tL) Mean over pairs 8.53 6.02 1.27 1.28 1.85
SD over pairs (2.96) (2.68) (1.64) (1.02) (1.84)

Median over pairs 9.21 6.39 0.50 1.44 1.23

Table 5: Comparison of best-response payoffs conditional on high versus low types, by treatment.

net earnings for all treatments except HCV. For tH , in private values, the predicted comparative
statics are found in the point predictions: participants have net positive earnings in IPV and LPV,
but negative in HPV. Earnings for tH are also higher in LCV than in HCV. Of particular note is that
the most negative earnings are observed for tH in HPV.

Result 5. The contests are more competitive than predicted by equilibrium, as measured by total

bids, for all treatments.

Support. Table 2 presents statistics on the sum of bids, measured again at the level of the pair. In
all cases this measure exceeds the equilibrium prediction. Consistent with equilibrium predictions,
the case of HPV is the most competitive, with the largest sum of bids by a large margin.

We turn to a complementary approach for summarizing bidding behavior. The monotonicity
condition on ψ is meant to capture the idea that it is better news about one’s prospects in the contest
if one receives type tH than if one receives tL. Result 4 measures this by the actual earnings
participants received. However, participants are not in general best-responding to the behavior of
the other participant in their pair.

The results so far are based on direct descriptions of the distributions of bids submitted by each
participant. Another way to summarize behavior in a way that is strategically relevant is to ask
what is the best response to each participant’s empirical distribution of bids. For each participant i,
we take as given the distribution of realized bids, as a function of their type, of the other participant
in their pair over the course of the experiment. Given those distributions, we determine the best
response bids conditional on type, (b?i (tH), b?i (tL)). Figure 10 shows these best response bids as a
scatterplot, with each participant plotted at coordinates (b?i (tH), b?i (tL)). For all treatments, the best
responses b?· (tL) cluster at or just above zero. This reflects the frequency with which bids of zero
are submitted, as can also be seen in Figures 2 and 3. This bimodal pattern of bids, with frequent
bids of zero combined with frequent aggressive bids, is also noted by Ernst and Thöni (2013) and
Sheremeta (2013).
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Figure 9: Scatterplots of observed payoffs conditional on low and high types, by treatment. Each
point represents one pair of bidders.
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Figure 10: Scatterplots of best response bids conditional on low and high types, by treatment. Each
point represents one bidder.
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Figure 11: Scatterplots of best response payoffs conditional on low and high types, by treatment.
Each point represents one bidder.
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To address the question of whether being type tH is “good news,” we compute for each partici-
pant the expected payoff of the best response bids (b?i (tH), b?i (tL)), which we write (π?i (tH), π?i (tL)).
Figure 11 presents these payoffs, with each participant corresponding to a point plotted at coor-
dinates (π?i (tH), π?i (tL)). If receiving type tH is indeed good news, we expect to see these best-
response payoffs clustered below the 45-degree line shown in the figure.

Result 6. Measured by the opportunities for best-response payoffs, type tH is good news relative to

type tL in private values treatments when the monotonicity condition is satisfied. In common values

treatments, best-response payoffs are almost equally attractive in LCV, opposite the prediction of

monotonicity.

Support. For IPV and LPV, Figure 11 shows that the best-response payoffs available conditional
on tH are generally much larger than those available to tL. For HPV, best response payoffs are
lower, and cluster more closely to the 45-degree line; in this treatment, receiving type tH is not
significantly better news for payoffs, again as predicted by monotonicity. However, for common
values the data do not support the prediction. In LCV, the payoffs available to type tL are often
substantially greater than zero, and almost as large as those available to tH , whereas in HCV having
type tH is better news relative to tL; this is the opposite of the prediction of the monotonicity
condition.

Table 5 quantifies the graphical observations. For each pair, we take the average of the dif-
ferences (π?i (tH), π?i (tL)) for the two participants in the pair to form an independent pair-level
measure, and report summary statistics of this measure in the Table. In IPV, in the average pair re-
ceiving type tH would lead to best-response earnings Q8.53 ≈ $1.12 higher than receiving tL; this
premium disappears in HPV. The premium for tH is small and roughly of the same magnitude for
LCV versus HCV, with the mean premium higher on average in HCV in contrast to the equilibrium
prediction.

How well do participants do against this best-response benchmark? The frequency of bids at
or near zero could be a naive response to the game, or, given the generally aggressive bidding ob-
served in most pairs, it could be a rational approximate best response to what the other participant
in the pair is doing. To investigate we construct a measure of response quality as follows. Take
some participant i and their co-participant j in the same pair. We take the empirical distribution
of bids of j, and, fixing a type tk for i, compute i’s best-response and worst-response payoffs
πk and πk conditional on j’s actual bidding behavior. We then compute the expected payoff πk
from the actual bids submitted by i when they had type tk. The measure of response quality for
bidder i when type tk is then Qk =

πk−πk

πk−πk
. This normalizes the payoffs onto the [0, 1] interval,

25



PV CV

Quantity Statistic IPV LPV HPV LCV HCV
p = 0.5 p = 0.6 p = 0.9 p = 0.6 p = 0.9

Response quality Mean over pairs 0.605 0.591 0.578 0.510 0.537
SD over pairs (0.070) (0.080) (0.083) (0.149) (0.127)

Median over pairs 0.605 0.624 0.586 0.545 0.558
Quality difference Mean over pairs 0.158 0.163 0.105 0.172 0.110

SD over pairs (0.114) (0.166) (0.073) (0.141) (0.110)
Median over pairs 0.147 0.905 0.100 0.143 0.072

Table 6: Analysis of response quality measures, by treatment. Response quality refers to aver-
age response quality between participants in a pair. Quality difference refers to the difference of
response quality within a pair.

with Qk = 1 meaning the participant always chose the best-response bid.10,11 We then measure i’s
overall response quality as the average of the response qualities, Q = (QH +QL)/2.

Figure 12 gives scatterplots of the response quality of each participant, plotted against the
response quality of their co-participant in their pair; as the plot contains points for both participants
in each pair, it is symmetric around the 45-degree line. With PV, responses cluster close to the
45-degree line, indicating that the response quality in each pair is similar for both participants;
it is generally not the case that one participant is playing naively while the other best responds.
Response qualities are slightly more dispersed in HPV than in IPV or LPV. On the other hand,
with CV, response qualities are much more heterogeneous. There are more pairs far from the 45-
degree line, indicating one participant in the pair is doing a much better job of best-responding,
as well as more dispersed along the diagonal, meaning that some participants are quite far from
best-responding in payoff terms.

Result 7. Response quality is higher in PV than CV, especially in IPV and LPV. Response quality

is most heterogeneous in LCV. Overall response qualities are fairly similar within pairs, suggesting

few participants are able to exploit systematically their co-participant’s strategies.

Support. Table 6 summarizes two measures of response quality at the pair level. The response
quality for a pair is measured as the average of the response quality measures of the members of

10The fact that the bid is always paid means there is always substantial variation in the payoffs as a function of bid,
and so the range of best-response versus worst-response payoffs is similar for all participants.

11Another approach would be to fit a logit noise parameter to the choices, in which case a smaller noise parameter
would correspond to more frequent choices of bids giving higher payoffs. The logit model cannot accommodate the
case in which the average payoff attained by the participant is less than that which would be attained by uniform
randomization; as is seen especially in LCV and HCV, there are participants who do manage to do worse than uniform
randomization.
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Figure 12: Scatterplots of response quality, by treatment. Each point represents one participant,
and plots their response quality against that of the co-player in the pair; therefore, the plot is
symmetric around the 45-degree line.
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the pair. Average response quality is highest in IPV at 0.605, and lowest in LCV at 0.510. Response
quality measures are also substantially more dispersed in CV than PV.

Heterogeneity within a pair is measured as the difference between the response qualities of the
two memvers of the pair. Within-pair heterogeneity is largest in LCV, and is generally larger in CV
than PV. Overall neither the scatterplots nor the summary statistics indicate that any participants in
any treatment are able to exploit systematically suboptimal play by their counterparts.

5 Conclusion

Contests are distinguished from, for example, winner-pay auctions by the conditions under which
information can be considered unambiguously good news. In winner-pay auctions, affiliation of
signals and values is sufficient to ensure that having a “higher” type is definitely good news. The
fact that bids in contests are irrevocably sunk even if the contest is lost creates a strategic complex-
ity when types are highly correlated.

We find that the strategic intuition embodied in the monotonicity condition assumed by Kr-
ishna and Morgan (1997) and Siegel (2014) is reflected behaviorally in private-values contests:
when values are highly correlated, competition is indeed stiff, while higher-value bidders do rel-
atively well when values are uncorrelated or weakly correlated. However, with common values,
the implications of the monotonicity condition for the effect of accuracy of information are not
observed in our experiment. Theory predicts that bidders with a high signal should do relatively
well when information is inaccurate, but the effect of the accuracy of information on behavior is at
best mixed.

These results provide a new dimension to the existing literature on behavior in common-value
settings. It is generally known that participants in experiments are prone to biases when reasoning
about games with common-value elements. Our experiment contributes to this discussion by vary-
ing the accuracy of information about the common value, and focusing on the implications of the
accuracy on qualitative characteristics of behavior.

A theme of the theoretical analysis of all-pay auctions with private types in Rentschler and
Turocy (2016) is the link between the monotonicity condition and complexity. When the matrix
ψ satisfies the monotonicity condition, there is a unique equilibrium which has a simple, easy-to-
construct form. In the symmetric case, in equilibrium each type “competes” only with the same
type of the other bidder. Absent monotonicity, the strategic calculus becomes more complex, as
optimal bidding requires consideration of the behavior of multiple possible type realizations of the
other player. The IPV and LPV parameterizations are simple in this sense, and indeed those are
the ones for which the qualitative predictions of the theory are observed in the data. In HPV, types
tH optimally should also be in direct competition sometimes with an opponent of type tL; this is
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a more complex situation, and we do observe lower and more dispersed response qualities in this
setting.

The monotonicity condition on ψ is elegant in that it does not distinguish between private,
common, or interdependent valuation structures. It does however rely crucially on conditional
probabilities and conditional expectations, two tasks at which humans are not generally strong.
Therefore, hidden in the monotonicity condition is another way in which parameterizations can
differ in complexity; the conditioning in CV is substantially more challenging than in PV. Our
results suggest that it is this complexity which dominates behavior: in LCV, participants of type
tH don’t realize that it is quite likely that they are, in fact, the prize’s only admirer.
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