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1 Introduction

Richard McKelvey, Gambit, and computing in finite games

Richard McKelvey, in applying noncooperative game theory and quantitative analysis to
problems in political science, was naturally confronted with the need for computer pro-
grams to assist in the analysis and solution of games. During the 1980s, Richard began to
write computer programs to compute Nash equilibria of games, initially in the language
BASIC and later in C. These programs were the ancestors of the library of routines for
analyzing finite games that came to be known as Gambit.!

Gambit owes its current form to a redevelopment and expansion during 1994 and 1995
under a National Science Foundation grant awarded to Richard jointly with Andrew
McLennan, with this author serving as principal programmer. The project currently com-
prises an extensive library in C++ to represent and analyze finite extensive and normal
form games, as well as a graphical user interface to manipulate games and visualize
results. Gambit is continuing to be developed as open source software, and is distributed
freely under the terms of the GNU General Public License.

This chapter explores some of Richard’s contributions to the quantitative analysis of
finite games. In addition, it provides for the researcher interested in pursuing a research
agenda similar in style to Richard’s a quick introduction to the existing methods for com-
puting Nash equilibria in finite games. Relative to the excellent surveys of MCKELVEY
AND MCLENNAN [19] and VON STENGEL [32], the goal is to provide some practical guid-
ance, based on the author’s experience in the development and maintenance of Gambit, in
the selection of the best methods for computing equilibria, and formation of reasonable
expectations as to how large and what types of games are feasible to analyze numerically.

1. Richard chose the name “Gambit” as a play on the words “game” and “bit,” the fundamental unit of
information.



Why compute?

Regardless of one’s ultimate objectives, a handy use of computation in analyzing a formal
model is the ability to build intuition about the model’s behavior as its structure and
parameters are changed. This process allows the modeler to play with the model, and
begin formulating hypotheses both about the overall predictions and implications of the
model, as well as for possible general results in the model. The intuition built from these
experiments may lead to insights, which can subsequently be develped into a formal
expression as a theorem. Even when a simple characterization in the form of a theorem
turns out not to be available, computational experiments yield information about the
quantitative predictions of the model.

The computation of Nash equilibria in finite games is a tedious process, as anyone who
has manually computed equilibria in a game with more than two players or involving more
than two strategies per player will attest. In fact, the number of equilibria can grow
quickly in the size of the game (see, for example, MCKELVEY AND MCLENNAN [20]). The
precise identification of the formal computational complexity of computing Nash equilibria
in finite games remains today an active area of research. What is clear, however, is that
the problem is computationally difficult, meaning that automating the process is essential.

One application of formal game models involves the determination of unknown param-
eters based on observed data. This process requires knowledge of the equilibria of many
closely-related games. For example, consider the MCKELVEY AND PALFREY [21]| experi-
mental study of behavior in the centipede game. This model introduced a probability that
a player has “altruistic” preferences. This rendered the centipede game an extensive form
game of imperfect information, with a parameter, the probability of these preferences
occurring, to be estimated from the data. What is observed in those data is the frequency
with which a player chose to “pass;” from that, one backs out the underlying probability.
However, the mapping from game parameters to equilibrium properties need not be
straightforward, or even have a closed form; hence, iteratively computing the equilibria of
the game for different probabilities is necessary to implement the estimation procedure.
This idea is generarlized by, for example, the recent work of BAJARI ET AL |2], who incor-
porate methods for computing all Nash equilibria of a game in an estimation procedure to
determine underlying parameters of a game.

An alternative identification approach uses the quantal response equilibrium concept of
McKELVEY AND PALFREY [22|, [23]. The QRE is a staple of analysis of finite games in
laboratory experiments (for example, the survey of GOEREE AND HOLT |7] gives a set of
examples where quantal reponse equilibrium predictions predict qualitative features of lab-
oratory data). Quantal response equilibria can be expressed in closed form only in special
cases, thereby making the problem of doing estimation using QREs inherently numerical.

Reasonable expectations

As with any endeavor to numerically analyze a problem, it is best to start simple,
attempting to work with “out-of-the-box” procedures available in existing packages. This
chapter summarizes some of the procedures which are applicable to any finite game, and
which are likely to produce results for most games of small or medium size.



It is important to keep in mind that, on average, the time required to find equilibria
increases rapidly in the size of the game. Further, since the increase in running time may
be exponential in the size of the game, future marginal advances in computing technology,
such as processor speed or multiprocessing, may not have a significant impact on the size
of game which may be adequately handled by general-purpose methods. In these cases,
practical numerical analysis of a game will require techniques which avail themselves of
the specific structure of the game.

Such methods are currently a topic of active development. The simplest example of
reducing the effective size of a game for computational purposes is to consider symmetric
games and search only for the symmetric equilibria of the game. Other classes of games
have structure to their payoffs which can be exploited computationally. ECHENIQUE |[5]
gives a procedure for efficiently computing all equilibria of supermodular games. KEARNS
ET AL 13|, among others, consider games with a particular graphical structure identifying
the local interactions among players. Similarly, polymatrix games (see GOVINDAN AND
WILSON [9]), where players’ payoffs are determined only by bilateral interactions, have a
computationally easier structure.

2 Numerical Methods to Compute Nash Equilibria

Some general considerations

MCKELVEY AND MCLENNAN [20] observe that the definition of a Nash equilibrium may
be recast in a number of different mathematical formulations. Each formulation suggests a
different approach to numerically computing Nash equilibria. Since these methods are
quite distinct, they are often adapted to different purposes.

A first observation is that if a game has an extensive (game tree) structure, it is gener-
ally advisable to choose methods which operate on the extensive game, rather than on its
reduced normal form representation. The number of strategies in the reduced normal form
of an extensive form game may grow quite (infeasibly) large for extensive forms of modest
size; or, to put it another way, there is redundancy in the reduced normal form represen-
tation. The worst-case scenario for this growth is the case of an extensive form game
which has many “parallel” information sets; that is, a pair of information sets for a player
such that play passes through one or the other of them. The extreme examples of games
like this are sequential-move games of perfect information such as tic-tac-toe.

Independent of one’s ultimate objectives, the first step in analyzing a game numeri-
cally is to identify and remove from consideration dominated strategies or actions.
GILBOA ET AL [6] show that computing strictly dominated strategies is of a complexity
easier than that of computing a Nash equilibrium. Iteratively eliminating strictly domi-
nated strategies, when possible, helps reduce the size of the game the equilibrium compu-
tation methods must confront, without removing any Nash equilibria. If one’s objective
will be only to compute a single equilibrium, iterative removal of weakly dominated strate-
gies is also suggested.?



The second step in searching for equilibrium is to perform a search for all equilibria in
pure strategies. While there is no procedure for doing this more sophisticated than a
brute-force search over all possible combinations of strategies or actions, it is effective even
for fairly large games. As an added benefit, equilibria in pure strategies are often consid-
ered the most compelling as a prediction of how a game would be played, so identifying
them quickly is of practical interest as well.

Methods for all finite games

If a game has no equilibria in pure strategies, or if a fuller characterization of the equi-
libria of a game involving randomization is desired, more sophisticated approaches are
indicated. Methods which are applicable to all games, regardless of the number of players
or payoff structure, are considered next. When these methods are implemented in Gambit,
their Gambit names are indicated in typewriter text.

One method generalizes the idea of looking first for equilibria in pure strategies.
PORTER ET AL [25] present a heuristic-based approach (PNS) for searching for equilibria
which looks first for equilibria in which players give positive probability to as few strate-
gies as possible. This method can be used to find all equilibria, but it is designed to be
biased towards finding a first equilibria as quickly as possible; this makes it ideal for
searching for either one equilibrium, or two equilibria (to determine whether the game has
a unique equilibrium). Since this method first searches for pure-strategy equilibria by
design, doing an independent search for pure-strategy equilibria is not necessary when
using this approach.

The PNS idea of searching over particular supports (i.e., sets of strategies played with
positive probability) can be adapted to instead organize supports in a search tree. This
method (EnumPoly) uses a top-down search that is able to prune some parts of the tree
from consideration. Thus, it is better suited in general than PNS for the task of computing
all equilibria.

In constrast, several methods operate by attempting to compute increasingly better
approximations to a Nash equilibrium. For applications where the equilibria of interest
involve randomized strategies, approximation methods may be attractive in that the
sequence of strategy profiles computed by the algorithm will converge in the limit to an
equilibrium. As such, the intermediate output of these methods can be viewed as giving
some hint as to where an equilibrium might lie. The support-based methods outlined in
the previous paragraphs give no indication whether the next support to be considered is
more or less likely to contain an equilibrium.

One robust approximation method is the simplicial subdivision method for normal
form games by VAN DER LAAN ET AL [30] (Simpdiv). This procedure constructs a grid
over the space of mixed strategy profiles, similar to the algorithm of SCARF [27]. This grid
is then traversed to compute a fixed point on this grid. Once such a fixed point is found,
the grid may be refined, and the fixed point of the coarser grid used as a starting point for
a search on the refined grid. In the limit as the spacing between grid points decreases to
zero, this process should compute a Nash equilibrium.

2. These comments assume the ultimate goal is identification of Nash equilibria. Some behavioral
solution concepts, quantal response equilibria among them, are affected by the presence of dominated
strategies.



Each fixed point computed as the grid is refined can be viewed as computing a
sequence of approximate equilibria, which in the limit will tend to a Nash equilibrium. In
practice this is often the case, though there is no theoretical guarantee that the process
will converge quickly. It is possible to appear to be converging to a particular point, only
to have the computed approximate equilibrium change substantially as the grid is refined.
Further, it is possible that a profile that appears to be the limit of a sequence of approxi-
mate equilibria is only revealed not to be the limit at a very fine grid size.

At every grid size, it is guaranteed that a fixed point on that grid will be found; how-
ever, on some games a very long path may be traversed to locate it. In the implementa-
tion of simplicial subdivision in Gambit, an optional “leash” parameter restricts how far
afield the algorithm searches, on the principle that it is possible but unusual for an
approximate fixed point to “disappear” as the grid is refined. Use of this restriction some-
times speeds convergence of the algorithm; however, it also means that the algorithm with
this leash activated is not guaranteed to compute an approximate equilibrium.

The starting point for the simplicial subdivision can be any point on the initial grid.
The resulting equilbrium found depends on the choice of the initial condition; therefore, it
is possible to find distinct equilibria using this method by choosing different starting
points. However, since the relationship between the initial point and the computed equi-
librium is not easy to see, it is not possible to be sure one has found all equilibria using
this approach.

Another method that computes a progressively better approximation to an equilibrium
is inspired by the quantal response equilibrium concept of MCKELVEY AND PALFREY
|22], |23] (Logit). Each branch of the logit quantal response equilibrium correspondence
converges in the limit to a Nash equilibrium of the game as the randomness in payoffs is
decreased to zero. A method to trace a branch of the correspondence efficiently is pro-
posed in TUROCY [29], which is the basis for the implementation in Gambit. Asymptoti-
cally as the noise is decreased, the quantal response equilibria converge fairly rapidly to
the limiting Nash equilibrium. As the quantal response equilibrium concept is now widely
used for quantitative analysis of data from laboratory experiments, computation of Nash
equilibria by this method has the advantage that the points necessary for such estimation
are computed as a byproduct.

The natural starting point for this method is the profile where all strategies (or
actions, for the extensive form version) are played with equal probability, and the noise
parameter is infinity; this point is always in the quantal response correspondence for all
games. The equilibrium found by traversing from this point is generically unique, and is
called the “logit solution” by McKelvey and Palfrey. Computing other Nash equilibria is
more problematic. Other, disconnected branches may exist, each of which connects two
Nash equilibria (again, generically); it is not clear how to reliably locate such branches in
general. In addition, not all equilibria are limits of logit quantal response equilibria,
meaning that the method is not guaranteed to compute all equilibria.

Another promising approach to computing equilibria is the global Newton method of
GOVINDAN AND WILSON [8]. This method is based on facts about how the set of Nash
equilibria of a game changes as payoffs are perturbed. It is observed that by making a
perturbation large enough, the perturbed game will have a unique equilibrium that is easy



to compute. This equilbrium is then traced back as the perturbation is made smaller to
reach equilibria of the original game. Since this method may take a long time to reach the
vicinity of the original game, GOVINDAN AND WILSON [9] introduce a method to reduce
this time by approximating the original game by polymatrix games, which are games
where the payoffs are determined by bilateral interactions among the players. Games with
this structure can be solved using an algorithm due to Lemke and Howson.? The global
Newton (Gnm) and polymatrix (Ipa) approaches, while recent developments, currently
appear to be promising as the “best” algorithms for computing equilibria for many games.*

Another method for approximating a Nash equilibrium is the Lyapunov function
method (Liap) proposed by MCKELVEY [18]. This function is based on the differences
between the payoff earned by each player at a given strategy profile and the payoff each
player would earn by playing his best reply to the other players’ choices; the function is
therefore nonnegative, and zero exactly at Nash equilibria. Thus, the function is attractive
since, approximately speaking, lower values of the Lyapunov function correspond to
strategy profiles where players are making best-reply errors that are less costly in payoff
terms.

Since the function is differentiable, standard function minimization methods can be
used to compute local minima of this function; and, if the function value at the local min-
imum is zero, then it is a Nash equilibrium. However, local constrained minima of the
Lyapunov function exist, and experience indicates that for many games, standard gra-
dient-descent methods will tend to converge to constrained local minima that are not
Nash equilibria. The properties of this function are not fully explored, and it may be pos-
sible that techniques such as simulated annealing or genetic algorithms, which are
designed to operate on functions that may have many local minima, may be effective in
establishing Lyapunov function methods as effective means for computing equilibria.

Methods for games with two players

Games with two players enjoy some convenient properties that often make the problem of
computing Nash equilibria simpler and more efficient. These derive in large part from the
observation that a player’s payoft for playing one of his strategies can be expressed as a
linear function of the probabilities the other player assigns to her strategies.

The workhorse for computing equilibria in normal form games with two players is the
method of LEMKE AND HOWSON [16]| (Lcp). The Lemke-Howson algorithm is a construc-
tive proof of the famous existence theorem of NAsSH [24]. The method proceeds by fol-
lowing a path of mixed strategy profiles that are “almost” equilibria. Each such profile has
the property that exactly one strategy that gives less than the optimal payoff for a player
is used with positive probability. At the end of any such path is a profile which satisfies
all the conditions of equilibrium. Because of the linearity of each player’s payoff function,
the Lemke-Howson algorithm can be implemented using matrix “pivoting” procedures,
which are well-studied numerical methods.

3. See the next section for details on this algorithm.

4. The Gambit implementation derives from the Gametracer implementation of BLUM ET AL [3].



The general experience is that the Lemke-Howson method finds an equilibrium
quickly. However, SAVANI AND VON STENGEL [26] give an example to show that the path
that the algorithm takes may be quite long in certain cases. Also, SHAPLEY |28] shows
that there exist equilibria that cannot be located using the method; therefore, one can not
use the Lemke-Howson method to compute all equilibria.

The specific operation of the Lemke-Howson method is generally opaque, and does not
give an easy intuition when compared to other methods. SHAPLEY |28| presents a graph-
ical interpretation of how the method operates on a simple example, though extending
that visualization to a larger game may be difficult. Note that while each step of the
Lemke-Howson algorithm gives an “almost” equilibrium, in that only one suboptimal
strategy is used, it is not in general true that each step provides a successively better
approximation to an equilibrium in the sense discussed in the previous section.

The existence of equilibria inaccessible by Lemke-Howson is addressed by an enumera-
tion method (EnumMixed) given by MANGASARIAN [17]. This method essentially computes
and visits all the strategy profiles that might be visited by the Lemke-Howson method,
and therefore can find even those strategy profiles that are not accessible via Lemke-
Howson. Therefore, it is suitable in principle for computing all equilibria. However, being
an enumeration method, the number of such profiles grows rapidly in the size of the game.
The enumeration of these extreme points can be done using the LRS algorithm of Avis
AND FUkuDA [1].

When a two-player normal form game is furthermore constant-sum, it is possible to
formulate the conditions for a Nash equilibrium as a linear programming problem (Lp).
This observation by DANTZIG [4]| serves as a constructive proof of the famous Minimax
Theorem of VON NEUMANN [31]. Linear programming problems are extensively studied
numerical procedures, and many good implementations exist for solving them.

The extensive form does not lend itself as directly to solution via linear programming
or linear complementarity programming. An important development in this area is an
alternate representation of an extensive form, the sequence form of KOLLER, MEGIDDO,
AND VON STENGEL [14]. The sequence form allows formulation of the equilibrium
problem in a way that parallels the formulation for normal form games. When the exten-
sive form is zero-sum, characterization of equilibrium points may be done using linear pro-
gramming in the sequence form. For non-constant-sum games, a variation on Lemke-
Howson described by LEMKE [15] may be applied.

Compared to the reduced normal form, the sequence form grows only at the rate the
extensive form grows. This occurs because the key concept in the sequence form is a
sequence of choices. This representational parsimony combined with the development of
efficient implementations of linear programming and linear complementarity programming
solvers means that games with more than a million nodes may feasibly be solved, even
when much smaller games would be infeasible using normal form methods.

Refinements of Nash equilibrium

Since there may be many Nash equilibria of a game, many “refinement” concepts for Nash
equilibria have been proposed to help eliminate Nash equilibria which are deemed to be
less plausible.



Several of the algorithms described already are guaranteed to compute Nash equilibria
satisfying certain refinements. The implementation of the Lemke-Howson method in
Gambit, by virtue of the way degeneracies are handled, is guaranteed to compute equi-
libria that are trembling-hand perfect. A further refinement of perfection, a proper equi-
librium, can be computed using the method of YAMAMOTO [34]. An equilibrium selection
method due to HARSANYI AND SELTEN [10| can be implemented using a homotopy
method of HERINGS AND PEETERS [11]. An algorithm to compute simply stable sets of
equilibria was proposed by WILSON [33].5

For extensive games, computation of equilibria satisfying the most basic refinement,
subgame perfection, can be accomplished with any algorithm simply by solving each sub-
game in turn, working backwards from the end of the game. For the additional refinement
of sequential equilibrium, the construction of the agent logit quantal response equilibrium
and Lyapunov function method for extensive games guarantees the computation of a
sequential equilibrium.6

3 Looking forward

In their study of the centipede game, published in 1992, McKelvey and Palfrey acknowl-
edged the use of donated time on a Cray XMP supercomputer to accomplish the estima-
tion. Today, similar computations can be carried out on off-the-shelf personal computer
hardware. These developments in computing power made the quantitative portion of
Richard McKelvey’s research program feasible. Indeed, the origins of Gambit lie in
Richard’s research, and Gambit represents part of Richard’s legacy to future researchers
seeking to pursue programs patterned on his approaches and methods.

The ubiquity of computers today continues to expand the boundaries of problems that
can be tackled with computational tools. JUDD [12| makes a strong case for a significant
role of computation in economics, and his comments apply with equal force to the applica-
tion of rigorous and quantitative methods to political science. As exemplified by much of
Richard’s work, formal theorem-proving and computation are natural complements. Com-
putational analysis can given initial insights into a model’s behavior, which in turn may
lead to formal statements of a model’s predictions in terms of theorems. Subsequently,
computation can play a significant role in the next step, of taking the model to the data
in a process of identification of a model’s parameters and testing the model’s quantitative
predictions.
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