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Abstract

This paper describes a new implementation of an algorithm to find all isolated Nash
equilibria in a finite strategic game. The implementation uses the game theory soft-
ware package Gambit to generate systems of polynomial equations which are necessary
conditions for a Nash equilibrium, and polyhedral homotopy continuation via the
package PHCpack to compute solutions to the systems. Numerical experiments to
characterize the performance of the implementation are reported. In addition, the cur-
rent and future roles of support enumeration methods in the context of methods for
computing Nash equilibria are discussed.

1 Introduction

It is no understatement that game theory has revolutionized many social sciences, most
notably economics, in the last few decades. In recognition of this, the 1994 Nobel Memo-
rial Prize in Economics was awarded to John Nash, John Harsanyi, and Reinhard Selten,
three pioneers of the field. The scope of the influence of game theory is not limited to
social science; for example, applications to biology date at least to MAYNARD SMITH |7].
In more recent applications, game theory is now being used in computer science to inform
the design of automated agents.

A central concept of game theory is the Nash equilibrium. Nash equilibrium can be
thought of as a condition of mutual consistency among the beliefs and actions of a collec-
tion of agents, each of whom seeks to maximize his own objective function. (A more
formal definition is given in Section 2.) Nash equilibria thus have a normative attraction,
in that they represent points which are stable with respect to unilateral changes in action
by any one player. At a Nash equilibrium, no individual player can change his action in
such a way as to improve his outcome in the game.

For games in which there are a finite number of players, each of whom can choose one
action from a finite set of possible actions, the existence of an equilibrium was established
by NasH [10]. Nash’s existence argument allows players to choose from the set of proba-
bility distributions over their actions. For many games, this is essential; the game “rock,
paper, scissors” is a familiar example in which randomization is necessary for the existence
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of equilibrium. While the mutual consistency property of Nash equilibrium suggests a
fixed-point formulation, the Nash equilibrium problem can be stated in several equivalent
ways; see the survey of MCKELVEY AND MCLENNAN [8] for more details. Each formula-
tion suggests a different computational approach for locating equilibria.

The mathematical versatility and beauty of the Nash equilibrium formulation aside,
practitioners in the various fields in which the concept is applied are primarily interested
in getting the set of equilibria of their games of interest, and in estimating what games are
and are not feasible to solve with a given computational budget. The software package
Gambit (McKELVEY, MCLENNAN, AND TUROCY [9]) aims, among other goals, to
provide such users a set of routines for computing the equilibria of an arbitrary finite
game. Currently, Gambit provides a number of methods which can compute one or more
equilibria in games with more than two players. However, clear guidance from experience
as to which method or methods to use remains absent. This paper documents one step in
the direction of “black-boxing” the process of computing equilibria in those games.

One class of approaches which has received recent attention is a method based on the
solution to systems of polynomial equations. The calculation is organized by enumerating
supports, where a support is a set of strategies which are assigned positive probability.
The Nash equilibrium conditions imply a set of polynomial equations, the solutions of
which contain the set of Nash equilibria on that support.

This approach is not new. In fact, this is the way most humans go about trying to
manually compute equilibria. The first published computer program to compute equilibria
using support enumeration was DICKHAUT AND KAPLAN [3]. A method which attempts
to compute all isolated Nash equilibria, using essentially the support enumeration
described in this paper, has been present in Gambit since the mid-1990s.

This paper reports computational results on a new implementation of this same sup-
port enumeration method. The program uses Gambit as the frontend for defining games
and generating the systems of polynomial equations to be solved. Polyhedral homotopy
continuation (HUBER AND STURMFELS [5]) is used as the backend to generate the solu-
tions of these systems, using PHCpack (VERSCHELDE [14]).

The program ties together two previous papers on the topic. HERINGS AND PEETERS
[4] develop essentially the same algorithm, decomposing the game by means of “admis-
sible” supports and showing how to solve the resulting systems of polynomial equations
using a homotopy method. This paper augments their work by giving and proving an
explicit algorithm for finding all admissible supports, and characterizing the scaling of the
algorithm as the size of the game increases. The choice of PHCpack as the backend is
inspired in part by the results of DATTA [2|, who gives a performance report on solving for
all totally mixed Nash equilibria of a game using PHCpack. He shows that the numerical
approach outperforms existing approaches to solve games via computer algebra using
Grobner bases.

The paper proceeds as follows. Section 2 outlines the Nash equilibrium problem. It
describes the support enumeration process to compute all supports which might harbor
Nash equilibria, and argues the correctness of the process. Section 3 evaluates the perfor-
mance and scalability of the program. Finally, Section 4 concludes with a discussion of
future directions and extensions, and the role of support enumeration methods within the
toolkit of computation in game theory.
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2 Description of the Nash equilibrium problem

The algorithm operates on games in strategic form. There are N players, indexed by i =
1,2, ..., N. Each player i chooses from a set of strategies S; = {1, 2, ..., J;}. The possible
outcomes of the game is the set S = x;—;__n S;; in a standard abuse of notation, S_; =
X j=i S; is used to denote the set of choices made by all players other than player i. For
each contingency s € S, each player i has a utility function u;: S — R.

Players are permitted to choose randomly from their strategy sets. Let X; denote the
set of distributions over S;, for all players i. A typical randomized strategy for player i
will be denoted ;, with 7;; denoting the probability player ¢ will choose strategy j € .S;.

Players perform their random selections independently. The function u; is extended to
randomized strategies using the expected value,

Ji I JN
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A randomized strategy profile 7= (m;)XL, is a Nash equilibrium if and only if it satisfies
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for all p;e€¥; for all t=1,2,..., N. That is to say, for each player i there is no other mixed
strategy p; which gives strictly higher expected value than 7;. An immediate consequence
of this is that in a Nash equilibrium, all strategies which are played with positive proba-
bility under m; must give the same value: u;(s, 7_;) = w;(t, 7_;) for any two strategies s,t €
S; such that m;s >0 and m;; > 0. Therefore, the Nash equilibrium conditions can be written

wi(s, m—;) = wi(t,m—;)Vs,t € S;suchthatm;; >0andm; > 0;
wi(s, m—;) > wi(t,m_;) Vs € S;suchthat m;s>0,Vt € S;;
mis > 0Vse Si;
Ji
> =1L

The conditions given by the equality constraints are polynomial equations. Given any
support, or selection of strategies assumed to have positive probability, these equations
form necessary conditions that must be satisfied if 7 is a Nash equilibrium. Given a solu-
tion to the equations, the inequality conditions can then be checked.

To use this approach to compute all Nash equilibria, all supports must be checked.
The number of possible supports in a game grows very rapidly in the size of the game.
For any given game, the number of possible supports is

N

[]2"-1

i=1
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which derives from the observation that each strategy s; € S; can independently be in or
out of the support (thus generating the 277, except the support where all strategies are
out is not valid (thus the minus one). However, some supports can be eliminated from
consideration, because it can be seen by inspection that no solution of the equality con-
straints can also satisfy the inequality constraints. In the terminology of HERINGS AND
PEETERS [4], such supports are “inadmissible.”

Turning to the question of finding all admissible supports, in what follows, a capital
letter, for example T', refers to a subset of the strategies in a game. A subscripted capital
refers to the strategies in that set belonging to a player; thus, 7T; denotes the strategies in
T belonging to player ¢. Calligraphic capitals refer to collections of sets of strategies, or
collections of supports. A support is defined a subset of the strategies in a game that sat-
isfies the additional requirement that each player has at least one strategy in the set. That
is, a support T is a subset of S such that, for each player i, T; C S; and T} # ().

A strategy s; € S;is said to dominate another strategy r; € S; if u;(s;,t) > w;(r;, t) for all
t € S_;. One can iteratively eliminate strictly dominated strategies from a game without
eliminating any strategy profiles that form a Nash equilibrium. In doing this process, one
constructs a sequence of supports {7, T?% ..., T*}, with S D T' D> T?> ... D T* which has
the property that no strategy in 7% is dominated by another strategy in 7%.! When con-
structing, say, T2, it is enough to only ask whether a strategy in T is dominated by some
other strategy in T'; it is not necessary to consider strategies eliminated in the process of
constructing T from the full support S. This follows because of a monotonicity property
of the dominance operator. If a strategy s; for player ¢ dominates a strategy r; for player ¢
when considered against contingencies generated from the strategies of other players in T',
then s; will still dominate r; when considered against contingencies generated from strate-
gies in a strictly smaller support V CT.

In this algorithm, at some points there is an arbitrary assignment as to whether a
given strategy is in a support. Therefore, it may occur that a strategy s; € T; that is domi-
nated by another strategy r; € T;. A mixed strategy profile on such a support cannot form
a Nash equilibrium. Therefore, the dominance elimination process is defined to consider
all strategies for a player, and not just those in the support currently being considered.

To make this more precise, a mixed strategy m; is said to dominate a pure strategy s;
against a support T if

T =TS = Uz‘(ﬂ'z‘, t_i) > UZ‘(SZ‘, t_i)Vt_Z- € Xz T ;.
The undominated strategies s; in a support 7" are then defined as
U(T) = {s;: Am;such that 7; =7s; }.

Let U>°(T) denote the transitive closure of the operator.

Define N to be the set of supports such that no strategy in the support is dominated
in this sense; that is,

N={T:UT)=T}.

1. Since we are considering finite games, this process is guaranteed to terminate in a finite number k of steps.



DESCRIPTION OF THE NASH EQUILIBRIUM PROBLEM 5

These supports are the ones which are admissible, and thus may be the support of one or
more Nash equilibria. This set can be enumerated recursively by considering sets of the
form

PX,Y)={TeN:zeTforallz€ X,andy¢ T forally €Y }. (2)

That is, P(X,Y) is the set of supports which are admissible, and in which all the strate-
gies in X are present in the support, and all the strategies in Y are not present in the sup-
port. Observe that P(0, ) = N, and that P(X,Y) = () by definition if X and Y are not
disjoint; in what follows, X and Y will be assumed disjoint.

If XUY =S5, then the value of P(X,Y) is clearly

[ {X} fU(X)=Xand X; =0 foralli,
P(X’Y)—{ 0 ifU(X)+ X or X; = () for some.

If XUY CS, then the value of P(X,Y) can be written recursively as
P(X,Y)=P(X U{s},Y)UP(X,Y U{s}) 3)

for any given s € S/(X UY). Observe that the two sets on the right side of (3) are dis-
joint, and also that the recursion defined by (3) is monotonic, in the sense that the sets X
and Y at deeper levels of the recursion are always supersets of those at the “parent” levels
of the recursion.

Availing of the monotonicity of the dominance operator U( - ), the recursive process
described by (3) can be optimized. Note that for any two sets of strategies 7" and U such

that T C U, if s¢U(S/T), then s ¢U(S/U). Because of the monotonicity of the process in
(3), if at any point in time, it is true that there exists some z € X such that x € U(S/Y),
then it must be that P(X,Y) =), because of the monotonicity of U.

Therefore, the following procedure based on (3) efficiently uses dominance information
to recursively compute A. For any given X,Y,Z=5/(XUY),

e Compute U (X U Z).
— If at any point in computing this support, no strategies remain for some
player i, P(X,Y)=0.
— If there exists s € X but s ¢ U°(X UZ), then P(X,Y)=0.
o LetY'=YU{seZ:s¢gU®XUZ)}, Z'=Z/{s€Z:s¢U®(XUZ)}.
o If Z/=0, then P(X,Y)={X}.
o If 7'+, select any strategy z € Z'. Then define P(X,Y, Z) recursively by
PX,)Y)=PXU{z},Y)UPX,Y'U{z}).
Then, in view of the preceding argument, the following proposition holds.

Proposition 1. Every support containing a Nash equilibrium is in the set P(0, ). Fur-
thermore, the support enumeration process visits each of these supports exactly one time.

Proof. The fact that P(0, ) = N follows from the definition in (2), observing that the
universal quantifiers hold trivially because X and Y are empty. The fact that the process

visits any support at most once follows from the disjoint nature of the sets in the union in
(3). O
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3 Numerical results

This section reports on some numerical experiments which exercise the program com-
bining Gambit and PHCpack to compute all Nash equilibria of a game in strategic form.

The first set of results consider the computational time for games of a given dimension
with randomly-selected payoffs. Each payoff is drawn independently from the uniform dis-
tribtion on [0, 1].

Runtime (sec)

Dimension Supports NE  non-NE | Enum PHCpack | Games sampled
2x2x2 298 1.92 1.63 0.01 0.02 100
2x2x2x2 12.75  3.86 22.15 0.27 0.28 100
2x2x2x2x2 54.98 7.34 195.51 0.48 4.14 100
2x2x2x2x2x2 224.48 15.52 1559.54 3.19 82.48 100
2x2x2x2x2x2x2 866.11 34.09 12538.22| 21.57 1881.51 100
2x2x2x2x2x2x2x2  3123.45 78.45 106185.27 | 164.70 51362.03 11
3x3x3 55.45  4.68 111.93 0.27 1.49 100
4Ax4x4 909.80 11.61  3469.58 | 6.40  108.71 100
5xHx5 12616.64 28.24 94374.07|136.99 6652.47 87
3x3x3x3 805.34 18.45 6101.96| 8.90  318.53 100

Table 1. Some summary statistics on the average performance of the program on games with
randomly-drawn payoffs.

Table 1 presents summary statistics on the average performance of the program. The
dimension column gives the number of strategies for each player. The second column gives
the average number of admissible supports considered in the games sampled. The third
and fourth column together report the average number of solutions found by PHCpack,
divided into those which correspond to Nash equilibria and those which do not. The fifth
and sixth columns give the average runtime, in seconds, on a Pentium IV workstation
with a single 2.8GHz processor. The column “Enum” gives the time spent performing the
enumeration, and “PHCpack” the time spent solving the systems of equations.

The striking feature of Table 1 is that the time per invocation of PHCpack, and the
number of solutions found that do not correspond to Nash equilibria, increase very rapidly
in the size of the game. The average number of supports visited ranges from roughly one-
third to one-half of the maximum possible for each size game.

It is possible, however, that these results are unduly pessimistic. Games which are of
interest to practitioners are not drawn randomly from the set of possible games; rather,
they often have a particular structure. This point is made, for example, by NUDELMAN
ET AL [12], whose GAMUT database of games collects examples from several such classes.
For some classes of games, the support enumeration process may be able to exploit this
structure by eliminating many supports from consideration. Based on the timing results in
the previous section, reducing the number of polynomial systems to be considered should
permit significantly larger games to be solved feasibly.
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As an example, consider the family of “minimum effort” games. In this family of
games, each player selects a level of effort from an interval of integers {1, 2, ..., J}. A
player selecting a level of effort e incurs a cost of effort c(e), where the function ¢( - ) is
increasing in effort. Each player receives a benefit b(min (ey, es, ..., ey)), which depends
only on the lowest level of effort chosen. Each player’s payoff, then, is given by

ui(€, €z, ..., ex) =w; — c(e;) + b(min (ey, €2, ..., en)),

where w; is player ¢’s initial endowment. In these games, the pure strategy equilibria are
those in which each player chooses the same effort level e, for each possible effort level e.
In addition, there are generally many mixed-strategy equilibria.

For example, consider the case of c¢(e) = 2e and b(e) = 3e, with w; =0. For N =3 and
J =4, there are 336 admissible supports, and total runtime is 33.3 seconds. Similarly, for
N =3 and J = 5, there are 2677 admissible supports, and the program runs in 1590 sec-
onds, and when N =4 and J =4, there are 3203 admissible supports, and runtime is 9138
seconds. These compare favorably with the “average” games from Table 1. In this
example, the symmetry of the game is not exploited, which would further significantly
decrease the computational load.

One care that must be addressed in working with the classes of games which might be
of interest to practitioners is that the set of Nash equilibria might not consist of isolated
points. As an example, consider a game due to NAU ET AL [11]. There are three players,
each with two strategies; Player I can choose T or B; Player II can choose L or R; and
Player III can choose 1 or 2. Table 2 gives the payoffs to the three players in each of the
eight contingencies.

I II III | Payoffs
TL 1]0,0,2
TR 1(0,3,0
BL 1(300
BR 1[0,00
TL 2[1,1,0
TR 2(0,0,0
BL 2(000
BR 20,03

Table 2. A three-player game with a positive-dimensional component of Nash equilibria.

In this game, there are three pure-strategy Nash equilibria: (7', R, 1); (B, L, 1), and
(B, R, 2). The first two of these are actually parts of one connected component of equi-
libria Uy U Uy U Us, where
Uy = (T;R;a[l] +(1—a)2]) fora e {0, Z},

Uy = (B;Lia[l]+ (1 —-a)[2]) fora e {Oé]’

U = (1—1(1/%,)@”] 1(—2(/5)/)5)04[3];@[[’]+(1_O‘)[R]§(1/4)[1]+(3/4)[2])f0ra€[0,1].
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Graphically, this component resembles the crossbar and uprights of an American football
goal, with U; and Ujz being the upright posts, and U, the analogue of the crossbar.? The
equilibria in this component thus arise from a total of five admissible supports. The cur-
rent implementation of the program will detect the possible presence of a component of
solutions through the return value from PHCpack, but does not attempt to characterize
the nature of the component. Such “degenerate” games are of interest in practice, however,
which means future development in this area is needed to create a true “black-box” solver
for general games.

4 Discussion

It is interesting, and perhaps ironic, that this method for computing equilibria is precisely
the one that humans often use. This has an advantage in that the operation of the algo-
rithm can be easily understood by human users. Practitioners are often interested, not
necessarily in finding all equilibria, but in finding out whether or not there exist equilibria
with a particular structure; that is, whether there are equilibria in which certain strate-
gies, or sets of strategies, are or are not used.

CHEN ET AL [1] illustrates one such application, which used Gambit and PHCpack to
establish the nonexistence of equilibria in which any player randomizes. This paper
studied the performance of two mechanisms for sharing the costs of using a common
resource that suffers from congestion, such as, for example, a computer network. The
mechanisms both have unique Nash equilibria when all players may choose the amount of
service they demand from a continuous set. However, in passing to a discrete strategy set,
uniqueness is lost, and a multiplicity of pure-strategy Nash equilibria exist.

The experimental design used by Chen et al involved four players, each choosing from
a set of 21 demand levels. For games of this size, investigating each support is clearly
infeasible. However, in this game, if one holds fixed the total demands of other players,
each player’s payoff function is quasiconcave in his own choice of demand. Therefore, in
order for the equilibrium conditions to hold, a player can be randomizing only over at
most two choices, ¢ and ¢ + 1. Thus, one needs to consider only 20 possible supports per
player, instead of 22! — 1. Through numerical exploration, it was established that there
were no equilibria involving randomization; based on the explorations, the authors conjec-
tured that this was a general fact in discretizing this class of games, which was proven for-
mally in the final version of the paper.

The support enumeration process presented here covers all possible supports, which is
necessary to compute all equilibria. In some cases, it is not necessary to compute all equi-
libria. For some applications, computing one equilibrium is enough. In other cases, one
might be interested in finding out whether the game has a unique equilibrium, in which
case the objective would be to minimize the time it takes to find two equilibria, if two are
present. Some heuristics in this direction are investigated by PORTER ET AL [13], who
find that support enumeration again stacks up well against other methods for finding a
sample equilibrium.

2. The crossbar in the football goal is straight, while component Us is curved.
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Despair at the scalability of the support enumeration process should also be tempered
by the observation that many games are naturally represented in extensive, or tree, form.
Using the sequence form representation of KOLLER, MEGIDDO, AND VON STENGEL |[6],
the strategy space for each player may be represented efficiently. Converting an extensive
game to strategic form for use with the support enumeration method described here may
result in a strategic form which is exponential in the size of the original tree. The
sequence form representation, on the other hand, is linear in the size of the tree. A sup-
port enumeration method similar to the one described here can be used on the extensive
form, and the Nash equilibrium conditions for each support result in a system of polyno-
mial equations and inequalities, just as in the strategic form. An implementation of the
support enumeration process has been available in Gambit since the mid-1990s; interfacing
this with PHCpack awaits future work.

At this writing, it appears support enumeration methods will have a significant future
in the practice of computing Nash equilibria. This method is the only one known at this
time that is guaranteed to find all Nash equilibria in finite time. Furthermore, investiga-
tion of interesting questions about the set of Nash equilibria often involves the enumera-
tion of only a subset of supports. This suggests that future implementations of such
a “black-box” solver for Nash equilibria should offer users flexibility in choosing how to
search all or part of the set of supports which might harbor Nash equilibria.

A second avenue for future development is in solving the systems of equations gener-
ated by the Nash equilibrium conditions on a support. These systems have some regular
structures. The equations generated by the indifference conditions for player ¢ involve only
the probabilities of strategies of players other than player i. In addition, the current
implementation ignores the nonnegativity constraints on the variables in solving the sys-
tems. The equations generated by one support are similar to those generated by other
supports which differ in the addition or removal of one strategy. In addition, HERINGS
AND PEETERS [4] list several other possible optimizations for special-case supports. None
of these possible optimizations are exploited by the current baseline implementation.
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