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Abstract

We extend the study of behavioural types in voluntary contribution games, adapting the

elicitation method of Fischbacher et al. (2001) to a broader range of economic and strategic in-

centives. Our results in the standard VCM game align with previous findings in many respects;

in particular, we identify one-quarter of participants as a distinctive group of “strong” condi-

tional cooperators. We provide an explanation for the behaviour of this group by tracking their

contribution strategies as the financial incentives of the game vary. We find that conditional

cooperators follow a sophisticated rule, matching contributions only when doing so leads to

an overall welfare improvement. This favours an account of conditional cooperation based on

social norm compliance, rather than confusion, inequity aversion, or warm-glow giving.
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1 Introduction

Many public goods and worthy activities are financed or supported in whole or in part by volun-
tary contributions. As has been observed at least since Sugden (1984), in many situations these
voluntary contributions cannot easily be rationalised entirely in terms of the benefits which ac-
crue directly to the contributors. Among the possible explanations for such behaviour, Fischbacher
et al. (2001) and a series of subsequent studies, including Fischbacher and Gächter (2010) and
Fischbacher et al. (2012), have provided evidence for an account that at least some voluntary con-
tributors are motivated by a principle of conditional cooperation. Fallucchi et al. (2019) show that,
in a survey of studies using Fischbacher et al. (2001)’s methodology, 38.8% of participants are clas-
sified in a group of strong conditional cooperators, who are characterised by matching the average
contributions of others exactly, or almost exactly, one-for-one. If this is a valid measurement of
the prevalence of this strong form of conditional cooperation in the field, conditional cooperation
potentially would go a long way towards explaining a willingness to make voluntary contributions,
especially in small to medium sized groups.

In this paper, we extend the “p-experiment” methodology of Fischbacher et al. (2001) to iden-
tify among competing accounts for why people choose strong conditional cooperation strategies
in the laboratory, when faced with a voluntary contributions game in a small group. We thereby
provide a more robust measurement of the prevalence of conditional cooperation as an expression
of a person’s genuine preferences. The key to this identification is to incorporate environments in
which following the one-for-one matching rule is Pareto-improving for the group only for some,
but not all, anticipated contributions by the rest of the group. Our central finding is that most
people who are identified as strong conditional cooperators in the environment using the baseline
parameters of Fischbacher et al. (2001) also match contributions one-for-one in other voluntary
contributions environments, but only when it is Pareto-improving to do so. Our data are evidence
that a majority of people who report strongly conditionally cooperative contribution strategies are
expressing a genuine and informed response to the incentive system.

Indeed, an informed and sophisticated person could have good reasons to adopt the contribu-
tion strategy of one-for-one matching which characterises strong conditional cooperation. For a
person with a generally prosocial attitude, one-for-one matching picks out a unique way to respond
positively to the contributions of others; because it is in principle broadly applicable, “try to do as
others do” could be a useful rule for navigating the many requests for time and treasure people en-
counter in the groups they are involved in. However, these same properties could be a reason why
one-for-one matching is not an informed and sophisticated response. One-for-one matching might
be observed because people may be confused or misunderstand the incentives in the experiment
(see, e.g., Bayer et al., 2013; Burton-Chellew et al., 2016), or may be transferring rules of thumb
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inappropriately from day-to-day life into the elicitation without regards to the financial incentives.
If many people who match one-for-one turn out to be in this latter category, the proportion of gen-
uine strong conditional cooperators would be much smaller, and furthermore methods based on
ideas similar to the p-experiment would be less reliable.

Previous studies with the p-experiment elicitation have used a payoff specification which is
linear in the contributions of each member of the group. This produces an environment in which
the contribution amount that maximises a person’s own earnings is always zero, and, conversely,
any nonzero contribution is always prosocial in that it increases the total earnings of the group. We
measure the contribution strategies of each person across a total of four environments, augmenting
the linear one with three in which the own-earnings maximising contribution is in the interior of
the strategy space. In those three environments, contributions below the own-earnings level are
Pareto-inefficient. These features allow us to identify from among the competing explanations
for strong conditional cooperation. Because a majority of people who match one-for-one in the
linear environment avoid Pareto-inefficient contribution levels in the other environments, we rule
out confusion or naı̈veté as explanations for most strong conditional cooperators. With data from
across four environments, we are also able to constrain further which theoretical models of individ-
ual behaviour are consistent with our observations; a model of social cooperation norm compliance
provides the best explanation.

The environments in which the own-maximising contribution is positive are useful for techni-
cal reasons, but these also incorporate some of the richness of public goods settings in the field.
Consider the situation when a parent or guardian receives an invitation at the start of a school year,
listing the planned trips and events for their child’s class for the year, and asking them to consider
volunteering as a chaperone for at least some. There is a public goods element in such a situation:
the presence of chaperones benefits the entire class – not to mention the teachers! – and in general,
the more chaperones the better. A parent might agree to volunteer for some events out of purely
personal interest, to enjoy the opportunity to spend time with their child. However, if parents all
volunteer only out of self-interest, the outcome will be inefficient, as parents would neglect the
positive externalities from their volunteering.

Depending on the details of the situation, there may be further strategic dimensions. A parent
might perceive, from their perspective, that contributions are strategic substitutes. If other parents
are likely to volunteer frequently, a parent may not feel the need to volunteer as much, because there
will already be adequate coverage; while if others are unlikely to volunteer, a parent might want to
volunteer more frequently to ensure trips can go ahead. Alternatively, a parent might have reasons
to think of contributions as strategic complements; for example, if they get social enjoyment out of
interacting with other parents during a trip or event, then the more other parents who will be there,
the more attractive volunteering becomes. Note that these conceptions of strategic substitutes
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or complements remain based entirely on the parent’s own preferences; they are separate from
the consideration that for any fixed level of volunteering by others, volunteering in excess of the
amount optimal considering only self-interest is welfare-enhancing for the whole group.

Our three additional environments comprise one in which the own-earnings-maximising contri-
bution is independent of the contributions of others (cf. Keser, 1996; Sefton and Steinberg, 1996),
one in which contributions are strategic substitutes, and one in which they are strategic comple-
ments. These two settings mirror the quantity and price oligopolies, as studied by Potters and
Suetens (2009), but in a public good frame. To our knowledge, we are the first to study individual
behaviour in public good experiments in two strategic settings where externalities are generated
by the investment choice in the private good.1 These allow us to test whether we continue to ob-
serve strong conditional cooperation in settings in which own-earnings-maximisation would lead
to nontrivial strategic interaction. We find that most strong conditional cooperators match one-for-
one when doing so increases total group earnings, and follow the (non-constant) own-earnings-
maximising reaction function when one-for-one matching would prescribe a contribution leading
to a Pareto-dominated outcome. Therefore, among this group identified as strong conditional co-
operators, we observe both an understanding of the strategic structure of the game and a desire to
conditionally cooperate expressed within the same contribution strategy.

The remainder of the paper is structured as follows. In Section 2 we introduce the economic
environments and mechanisms used in the experiment, and discuss two theories of behavioural
types. In Section 3 we describe the experimental design and the choice architecture. In Section 4
we state the hypotheses which motivate the data analysis and results of Section 5. We conclude in
Section 6 with a discussion.

2 Theory

2.1 A public goods environment with linear-quadratic earnings

There are N players, i = 1, . . . , N , whom we refer to collectively as the group. Each player i
has an endowment ω > 0 of a resource, which we call tokens, which she can allocate between a
private account and a contribution 0 ≤ gi ≤ ω towards a public good, which we call the project.
The total amount contributed towards the project by the group is G ≡

∑N
j=1 gj , with G−i =∑

j 6=i gj denoting the total contributions of players other than i. Given player i’s contribution gi
and contributions to the project by other players G−i, the monetary payoff of player i is given by a
function Πi(gi, G−i).

1We are aware of one other paper, by Lappalainen (2018), where there is complementarity in the public-good
production technology.
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In our experiment monetary payoffs are determined using functions of the form

Πi(gi, G−i; β1, β2, λ) = (β1 − λG−i) (ω − gi)− β2(ω − gi)2 + 0.4 [G−i + gi] , (1)

where β1 > 0 and β2 ≥ 0.2 We hold constant the marginal per-capita return (MPCR) from
contributions to the project at 0.4. By varying β1, β2, and λ, we can manipulate the location
and slope of the reaction function, given G−i, for a player who wants to maximise her monetary
earnings.3

When β2 = λ = 0, we have

Πi(gi, G−i; β1, 0, 0) = β1(ω − gi) + 0.4 [G−i + gi] , (2)

which is the payoff function for a standard VCM game with linear and additively separable pay-
offs. The earnings-maximising reaction function for player i is to allocate all tokens to her private
consumption,

g̃i(G−i) = 0. (3)

Note that ∂
2Πi(gi;G−i)

∂g2i
= −2β2. When β2 > 0, earnings are strictly concave in the number of tokens

allocated to the project, and the reaction function for player i to maximise her own earnings is

g̃i(G−i) = ω − β1 − λG−i − 0.4

2β2

, (4)

when the g̃i(G−i) so defined is in [0, ω]. The parameter λ captures the degree of complementarity
or substitutability of contributions, and therefore the slope of the reaction function. When λ = 0

in (4), the reaction function is constant, as in the specification used by Keser (1996) and Sefton
and Steinberg (1996).4 When λ > 0, player i wants to contribute more tokens to the project when
others are making larger contributions, whereas when λ < 0 she wants to contribute fewer tokens
to the project when others’ contributions are higher.5

In our experiment tokens are discrete. In passing to the discretised action space, which we call
AZ, we observe that the strict concavity (when β2 > 0) of Πi(gi, G−i) with respect to the contribu-

2Potters and Suetens (2009) used a similar quadratic specification in an experiment with repeated interaction be-
tween fixed pairs.

3Our baseline analysis is done under the assumption of that all players have utility equal to their own monetary
earnings. Unless otherwise noted, terms such as “reaction function” or “dominant strategy” refer to this case. In the
sequel we discuss some of the implications of changing or relaxing this assumption.

4Other studies using a quadratic specification with an interior earnings-maximising dominant strategy are Willinger
and Ziegelmeyer (1999), and Gronberg et al. (2012).

5Other approaches have been used to generate interior equilibria. Andreoni (1993) used a Cobb-Douglas payoff
specification; Cason and Gangadharan (2015) a piecewise-linear specification; and Chan et al. (2002) a quadratic
specification with a different structure than ours.
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tion to the project ensures that, when the reaction function given by (4) is not a whole number, the
earnings-maximising contribution in the discrete setting is either the integer immediately above or
below. In the exposition of our experimental parameterisation we focus on this discretised case.

Allocation decisions are made in two stages, using an extensive form game introduced by
Fischbacher et al. (2001) as the p-experiment game. In Stage 1, players i = 1, . . . , N − 1 simul-
taneously and independently choose their contributions gi. Then in Stage 2, the remaining player
i = N learns the average contribution of those N − 1 players, rounded to the nearest integer,
which we refer to as G; she then decides her contribution. Therefore, the strategy spaces for play-
ers i = 1, . . . , N − 1 are the same as the action space, Si = AZ. For player N , the strategy space
is SN = {s : {0, . . . , ω} → AZ}. The rounding involved in determining G makes this game
formally a game of imperfect information; each level of G is an information set. We refer to the
component of the action of players i = 1, . . . , N − 1 specifying the contribution to the project as
the unconditional contributions ui, and the strategy in SN specifying the contribution to the project
as the contribution strategy c(·).

For each game, we identify the set of rationalisable strategies (for players whose objective
function is to maximise their own earnings), and the set of perfect Bayesian equilibria in pure
strategies. We refer to an equilibrium as symmetric when the unconditional contributions ui are
the same for all i = 1, . . . , N − 1.

2.2 Experimental parameterisation

Groups in our experiments consisted of N = 4 players. Participants made decisions in four games.
In each game participants had an endowment of ω = 20 tokens. Earnings in our baseline game,
LINEAR (ΓL), were determined the same way as in Fischbacher et al. (2001), Fischbacher and
Gächter (2010), and Fischbacher et al. (2012),6

ΠL
i (gi, G−i) ≡ Πi(gi, G−i; 1, 0, 0) = (ω − gi) + 0.4 [G−i + gi] ,

That is, the value of each token allocated by player i to her private account was £1.00, irrespective
of how many tokens she allocated or the decisions of others in the group.

We compare participants’ decisions in ΓL with their decisions in three games in which β2 =

.03. The parameters for each game generate a reaction function for the Stage 2 player which is
in the interior of the action space for all values of u1 + u2 + u3, and, importantly, the earnings-
maximising response for the Stage 2 player is the same for all values of u1 + u2 + u3 consistent
with each information setG. Therefore the loss of precision in information about the play of others
due to the rounding of average contributions is not strategically relevant for the best response of

6All earnings are expressed in GBP.
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the Stage 2 player. In Appendix A we discuss our choice of parameters and provide a complete
analysis of the equilibria of each game for own-earnings-maximising players.

In DOMINANT (ΓD) earnings are determined by

ΠD
i (gi, G−i) ≡ Πi(gi, G−i; 1.18, 0.03, 0) = 1.18(ω − gi)− 0.03(ω − gi)2 + 0.4 [G−i + gi] .

This game can be solved by iterated elimination of strictly dominated strategies. The Stage 2 player
has a strictly dominant strategy c?D(G) = 7 for all G. Given this, a contribution of u?Di = 7 is
strictly dominant for each player i.

In SUBSTITUTES (ΓS) earnings are determined by

ΠS
i (gi, G−i) ≡

Πi

(
gi, G−i; 1.06, 0.03,− .02

3

)
=

(
1.06 +

.02

3
G−i

)
(ω − gi)− 0.03(ω − gi)2 + 0.4 [G−i + gi] .

The Stage 2 player has a strictly dominant strategy, which is a nonincreasing strategy c?S(G) with
c?S(0) = 9 and c?S(20) = 4. The rationalisable unconditional contributions are 3 ≤ uSi ≤ 7 for
i = 1, 2, 3. There is a unique symmetric equilibrium with u?S1 = u?S2 = u?S3 = 7, with c?S(7) = 7

on the equilibrium path, and asymmetric equilibria with u?S1 + u?S2 + u?S3 = 13, with c?S(4) = 8

on the equilibrium path.

In COMPLEMENTS (ΓC), earnings are determined by

ΠC
i (gi, G−i) ≡

Πi

(
gi, G−i; 1.34, .03,+

.02

3

)
=

(
1.34− .02

3
G−i

)
(ω − gi)− .03(ω − gi)2 + 0.4 [G−i + gi] .

The stage 2 player has a strictly dominant strategy, which is a nondecreasing strategy c?C(G) with
c?C(0) = 4 and c?C(20) = 11. The rationalisable unconditional contributions are 7 ≤ uCi ≤ 10 for
i = 1, 2, 3. There is a unique symmetric equilibrium with u?C1 = u?C2 = u?C3 = 7, with c?C(7) = 7

on the equilibrium path, and asymmetric equilibria with u?C1 + u?C2 + u?C3 = 29, with c?C(10) = 8

on the equilibrium path.

For any fixed G−i, the group’s total earnings are always maximised when player i contributes
all of her tokens to the project. Furthermore, for games γ ∈ {D,S,C}, any contribution g <

c?γ(G) by the Stage 2 player is Pareto-dominated by a contribution of c?γ(G). There are no such
conditionally Pareto-dominated contribution levels in LINEAR.
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2.3 Theories of types in the linear p-experiment game

The p-experiment game is typically combined with the strategy method, which enables elicitation
of the full strategy of the player making her allocation in Stage 2. The contribution components
of these strategies have been used as the basis for identifying different types of behaviour across
participants.

Fallucchi et al. (2019) found that in previous studies using the p-experiment game with linear
payoffs, there were 397 distinct contribution strategies chosen by the 551 participants in the sam-
ple. Only two of these were followed exactly by more than a small number of participants: (1)
free-riding (FR), which corresponds to the contribution strategy c(G) = 0 for all G, and (2) exact
one-for-one matching (OFO), which corresponds to c(G) = G for all G. Of the remaining 395
contribution strategies, 381 of them were chosen by exactly one of the 551 participants.

Because of this prevalence of similar-but-not-identical contribution strategies, methods for
classifying different strategies into a small number of types have been proposed. There is inher-
ently an element of judgement in dividing the heterogeneous contribution strategies into a small
number of types. We therefore consider two type schemata, which we will use jointly to help
summarise the contribution strategy data. Each contribution strategy will therefore have a “type”
in each schema; which schema is being referenced will be clear from the context.

Fischbacher et al. (2001) proposed a schema (which we call FGF) which classifies strategies
into four types. Free-riders (FR) contribute exactly zero in all contingencies, c(G) = 0. Con-
ditional cooperators (CC) increase their contributions based on higher contributions by others.
Formally, participant i is a conditional cooperator if the Spearman’s ρ correlation coefficient be-
tween the vector [0, 1, . . . , ω] of possible average contributions and the participant’s contribution
strategy [c(0), c(1), . . . , c(ω)] is significantly positive with p-value less than some threshold (typi-
cally 0.001, which is the value we use in this paper). Hump-shaped (HS) contributors are identified
by visually classifying contribution strategies in which c(0) and c(ω) are zero or small, but c(G) is
larger for some intermediate information sets 0 < G < ω. Any contribution strategy not matching
one of the above criteria is placed in a residual type.7

Fallucchi et al. (2019) re-visit data from six p-experiment studies, and use cluster analysis
to propose there are five “stereotypical” strategies: own-maximisers (OWN, ĉOWN(G) = 0),
weak conditional cooperators (WCC, ĉWCC(G) = 1

2
G), strong conditional cooperators (SCC,

ĉSCC(G) = G), unconditional high contributors (UNH, ĉUNH(G) = ω), and mid-range contribu-
tors (MID, ĉMID(G) = 1

2
ω). We use this observation to construct a second schema (which we call

7Thöni and Volk (2018) have proposed a refinement to the FGF schema which focuses on improving the distinction
between CC and HS. Using their version of the schema would not affect our results, because strong conditional
cooperators are CC under both versions, and because we do not observe contribution strategies which have a hump-
shaped form in the data we report.
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FLT).8 We define the distance between two contribution strategies c and c′ using the Manhattan
distance,

d(c, c′) =
ω∑

G=0

∣∣c(G)− c′(G)
∣∣ . (5)

Letting c(j) denote the contribution strategy of a given participant j, the type of the strategy in this
schema, T FLT (c(j)), and by extension the participant, is determined by the stereotypical strategy
to which c(j) is closest,

T FLT (c(j)) = arg min
t∈{OWN,WCC,SCC,UNH,MID}

d(c(j), ĉt). (6)

3 Experimental design

3.1 Payoff structure treatments

Participants were assigned at random into groups of four. The member identifiers of the group
were the four suits of a standard deck of cards (clubs, diamonds, hearts, and spades). The standard
icons for these suits were used extensively in the instructions as well as the decision screens.
Each participant’s instructions were customised based on their suit identification. For example, the
instructions for a participant with the identifier clubs (♣) consistently used phrasing like “your ID
(♣)” and “the other members of your group (♦♥♠).”9

Participants were asked to make their decisions in each of the four games without any feedback
on the choices of others or outcomes of any of the games. The games were presented in one of four
orderings, which differed across sessions. Games 1 and 3 were always LINEAR and DOMINANT,
in either order, and Games 2 and 4 where always COMPLEMENTS and SUBSTITUTES, again in
either order.

3.2 Timing of moves

The decisions in each game were elicited using the p-experiment protocol created by Fischbacher
et al. (2001).

8Fallucchi et al. (2019) use the output of their cluster analysis to assign types. A feature of using cluster analysis is
that types are defined endogenously based on the full dataset presented to the algorithm, and therefore the classification
of strategies on the “border” between types may change as new data are included. The deterministic version presented
here is based on their observation that these stereotypical behaviours, which have simple intuitive behaviours, emerge
robustly as the centres of mass of types even when resampling the data.

9Complete instructions are available as a separate Appendix. The instructions illustrate a number of other practical
details of how the experiments were implemented which we omit here.
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Figure 1: Screenshot of the allocation panel, used by participants to indicate decisions in the
experiment. Left: The panel at the start of a decision. Right: The panel with an allocation selected,
with 6 tokens allocated to the project and 14 to the private account.

3.2.1 Step 1: Explain the earnings structure

For each game, the first screen explained to participants how their token allocation would affect
their earnings and those of others in their group. This was explained both in a brief prose descrip-
tion, and using a table; the contents of the screens for each of the games are included in a separate
Appendix.

We presented the decision-making task in terms of allocating twenty individually-numbered
tokens to either the project or the private account. The structure of the earnings function (1) allowed
us to express the earnings consequences of the allocation of each individual token. Because the
MPCR was held constant at £0.40 for all tokens in all games, the consequence of allocating any
token to the project was shown as “40p each.” The four games varied the consequence of allocating
different tokens to the private account. By convention, token #1 was the token which generated the
smallest return when allocated to the private account, and token #20 the token which generated the
largest return.
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3.2.2 Step 2: The Stage 1 allocation

We elicited decisions using the graphical device shown in Figure 1, which we referred to as the
allocation panel. The participant allocated a token to the project by clicking on the box to the left of
that token. Similarly, the participant allocated a token to the private account by clicking on the box
to the right of that token. When a participant clicked to allocate token i, the device automatically
allocated all tokens with numbers below i to the project, and all tokens with numbers above i
to the private account.10 Participants were able to adjust their allocations as many times as they
wished before confirming. Colour-coding was used to indicate the currently-selected allocation;
tokens allocated to the project were shown in yellow and those to the private account were shown
in orange.

The allocation panel incorporated information about the consequences of an allocation directly
into the graphical instrument used to express the choice.11 Each token was individually labeled
with the consequence of allocating that token to the project. The project column included the
identifiers of all four group members and each consequence in this column included the word
“each.” The private account column included only the identifier of the participant making the
decision.

3.2.3 Step 3: The Stage 2 allocation

Figure 2 displays the choice architecture for the Stage 2 allocation strategy, which required the
specification of 21 decisions. We referred to each possible realisation of the average Stage 1
allocation to the project as a scenario. The allocation panels for three scenarios were available on
the screen at any time, with a tabbed interface available to navigate among scenarios. A panel at
the right of the screen summarised the allocations made by the participant so far. Allocations could
be made in any order and changed as often as the participant liked, before confirming the decisions
with the button at the bottom-right of the screen.12

3.2.4 Step 4: Determination of earnings

One of the four games was selected at random to determine the earnings for the session. At the time
participants made their decisions, they did not know which game would be selected, nor whether
they would make their decisions in Stage 1 or Stage 2.

10Therefore the allocation panel did enforce efficiency in that, whenever k tokens were allocated to the project, they
were always the k tokens worth the least to the participant in their private account.

11Gronberg et al. (2012) also used a device for making earnings-maximising responses straightforward to discover,
but their architecture did not directly represent the social benefits of contributing to the project.

12In contrast, Fischbacher et al. (2001) elicit this using an array of 21 text boxes referred to as the “contribution
table.” In our instructions we simply refer to Stage 1 and Stage 2 choices.
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Figure 2: Indication of Stage 2 allocation strategy decisions. Three scenarios were available on the
screen at a time. Navigation across scenarios was available using tabs at the bottom of the screen.
A panel at the right summarised the allocation decisions made so far.

3.3 Experimental sessions

We conducted a total of 8 sessions at the laboratory of the Centre for Behavioural and Experimental
Social Science (CBESS) at University of East Anglia, in April and May, 2016. We recruited
148 participants from the standing participant pool, maintained using the hRoot system. (Bock
et al., 2014) The experiment was programmed using zTree (Fischbacher, 2007). Sessions lasted
on average 75 minutes, including instructions and control questions, and participants earned on
average £23.39 with an interquartile range of £5.34.13

4 Hypotheses

4.1 Identifying the motivation of behavioural types

Our principal research question is to identify whether the behaviour of people classified as strong
conditional cooperators are motivated by an informed response to the incentives of the environ-
ment. The main data of interest therefore are the Stage 2 contribution strategies, and we structure
our main hypotheses around these.

In our experiment LINEAR is a systematic replication of previous studies using the p-experiment

13For comparison, the living wage in the United Kingdom at the time of the experiments was £8.25 per hour.

12



protocol. We retain approximate parity in the financial incentives themselves. However, to ensure
transparent communication of the the financial incentives across all games, we structure the choice
differently than Fischbacher et al. (2001) and others, using an allocation14 of distinct tokens, where
each token is labeled with the earnings consequences resulting from being allocated to the private
account or the project.15 The way the choice is framed or explained can affect the decisions people
make in voluntary contributions games. (e.g. Brandts and Schwieren, 2009; Dufwenberg et al.,
2011; Cubitt et al., 2011; Cox et al., 2013; Cox, 2015; Khadjavi and Lange, 2015; Kingsley, 2015;
Cox et al., 2018). For comparability with previously-published results, we must first confirm that
the features of our design do not change the Stage 2 contribution strategies in LINEAR; or, to put it
another way, that the distribution of contribution strategies obtained in the linear setting is robust.

Hypothesis 1. The proportions of types of contribution strategies in LINEAR will be the same in

our experiment as in previously-reported experiments.

Fallucchi et al. (2019) identified the two most common types of contribution strategies in p-
experiment studies in the linear setting: strong conditional cooperators (38.8%) are the largest
group, followed by own-maximisers (25.8%), who in the linear case choose to contribute exactly
or almost always zero. Contributing zero tokens at all information sets in Stage 2 always max-
imises a person’s own earnings and, insofar as it is not controversial that in many experiments
many people make choices in a way that is consistent with own-earnings maximisation, it is a rea-
sonable presumption that own-maximisers in LINEAR are motivated by recognising which strategy
maximises their own earnings, and they act on this.

Hypothesis 2. Participants who are identified as own-maximisers in LINEAR will exhibit own-

earnings-maximisation across all games; that is, they will use contribution strategies given by the

version of (4) restricted to discrete integer choices.

In contrast, different accounts have been given for the behaviour of strong conditional co-
operators. Participants might match the contributions of others one-for-one because they do not
understand the economics of the game as given by the financial incentives, or because they are
ignoring those incentives in favour of a rule of thumb transferred from a different context. In each
of DOMINANT, SUBSTITUTES, and COMPLEMENTS, following a one-for-one rule of thumb when
others contribute below the Nash level would lead to conditionally Pareto-dominated contributions.

14In constrast, many VCM experiments, including those of Fischbacher et al. (2001); Fischbacher and Gächter
(2010); Fischbacher et al. (2012) to which we compare our results, ask participants to specify only the contribution to
the group project, and usually ask them to do so by typing a number into a box.

15Our choice architecture is thus similar to one which has been used in field studies with primary school children (see
e.g. Harbaugh and Krause, 2000; Hermes et al., 2019) to provide an easier understanding of the payoff consequences
of choices in the linear public good game.
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If strong conditional cooperators were to match one-for-one for contributions lower than the Nash
level, this would implicate confusion or heuristic transfer.

Hypothesis 3. Participants who are identified as strong conditional cooperators in LINEAR will

follow the same rule of thumb of (approximate) one-for-one matching across all games; this will

result in conditionally Pareto-dominated choices in some contingencies.

4.2 Unconditional contributions

In the p-experiment protocol, the unconditional contributions in Stage 1 serve primarily to establish
the incentive-compatibility of the contribution strategies in Stage 2, because each Stage 2 infor-
mation set may be realised with positive probability depending on the unconditional contributions
the other players in the group make. Nevertheless the Stage 1 contributions are of interest in their
own right, as they are incentivised choices made in a voluntary contributions setting with nontrivial
strategic considerations.

For the same reasons motivating Hypothesis 1, we first check whether we replicate contribu-
tions in the baseline linear environment.

Hypothesis 4. The distribution of unconditional contributions in LINEAR will be the same in our

experiment as in previously-reported experiments.

SUBSTITUTES and COMPLEMENTS present an interesting strategic environment for players
in Stage 1. This differs from standard simultaneous-choice VCMs because Stage 1 players in
the p-experiment should anticipate that raising or lowering their contribution is likely to have an
effect on the contribution of the Stage 2 player in these games. Under the assumption of an own-
earnings-maximising Stage 2 player, in SUBSTITUTES if a Stage 1 player deviates and lowers their
unconditional contribution, it might result in the Stage 2 player increasing theirs, while in COM-
PLEMENTS if a Stage 1 player deviates and raises their unconditional contribution it might result
in a matching increase from the Stage 2 player.16 Because these games are played only once and
without any feedback at all, it is not plausible behaviourally that people would play an equilibrium,
whereas it is possible to recognise the opportunity to manipulate strategically the Stage 2 player’s
response as described. We therefore propose that rationalisability is the appropriate concept to
apply to predicting choices in Stage 1.

Hypothesis 5. Unconditional contributions will be lower in SUBSTITUTES than in DOMINANT

than in COMPLEMENTS.
16In Appendix A we show that the discreteness of the strategy space inherently gives rise to asymmetric equilibria

in these games precisely because of this reasoning.
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FGF FLT

Study N FR CC OFO OWN WCC SCC UNH MID

Our data 148 22.3 52.7 7.4 32.4 22.3 27.0 2.7 15.5

Fischbacher et al. (2001) 44 29.5 50.0 9.1 43.2 20.5 27.3 2.3 6.8
Fischbacher et al. (2012) 136 14.7 70.6 11.0 35.3 21.3 38.2 2.2 2.9

Fischbacher and Gächter (2010) 140 22.9 52.1 9.3 42.1 20.0 32.9 2.1 2.9

Table 1: Type classifications based on contribution strategies in LINEAR.

5 Results

5.1 Contribution strategies and behavioural types

We benchmark our LINEAR data against the series of studies, which use the p-experimental pro-
tocol, by Fischbacher et al. (2001), Fischbacher and Gächter (2010), and Fischbacher et al. (2012)
(which we refer to as the “Fischbacher sample”).

To get a handle on whether our contribution strategies are similar to those in the Fischbacher
sample, we classify behaviour according to the two type schemata, FGF and FLT, introduced in
Section 2. In Table 1 we report classifications based on the two approaches.17 Although matching
exactly one-for-one in all 21 information sets is the second most common contribution strategy, it
is not a type in its own right in either schema (it is a subset of CC in FGF and SCC in FLT). We
therefore report the proportion of these separately as OFO.

Result 1. The proportions of strategies which exactly or approximately maximise the participant’s

own earnings, and the proportions of strategies which exactly or approximately match the average

contributions of the group, are similar in our data and the Fischbacher sample.

Support. Contribution strategies which exactly or approximately maximise the participant’s earn-
ings appear with similar frequencies. For exact maximisation, we find a proportion of FR similar
to the Fischbacher sample (22.3 compared to 20.3, p = .62 using the binomial test). Relaxing
to approximate maximisation, our proportion of OWN is also similar (32.4 compared to 38.8;
p = .14).

Exact one-for-one matching occurs at a similar rate (7.4 compared to 10.0, p = .37), as does the
more relaxed criterion of strong conditional cooperation (27.0 compared to 34.1, p = .13).18

17We do not report proportions of “hump-shaped” (HS) contributors. Among the 37 participants who do not satisfy
the criteria for FR or CC, none exhibit a clearly hump-shaped pattern. The presence of any clearly HS strategies would
be evident in the heatmaps in Figure 3 and Figure 8. The absence of HS contribution strategies in our data is a notable
difference from most previous studies.

18If we consider all types, our type distribution is similar to the Fischbacher sample under the FGF classification (χ2

test, p = 0.329), but differs under the FLT classification (χ2 test, p = 0.004). The differences arise from contribution
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Do the types identified by the contribution strategies chosen in LINEAR predict the contribution
strategies in games DOMINANT, SUBSTITUTES, and COMPLEMENTS? We focus first on OWN,
WCC, and SCC, who together comprise 83.5% of our participants.

To give an initial visual summary of the data, we use the method developed in Fallucchi et al.
(2019) and construct heatmaps for the contribution strategies of each type in each game. Let
T (j) denote the type classification of a given participant j. The heatmap for a type t is produced
by taking the contribution strategies of all participants assigned to that type, and constructing the
multiset {(G, c(j)(G))}j:T (j)=t,G=0,...,20. The frequencies of these ordered pairs are used to generate
the heatmap. Cells with darker shades correspond to higher frequencies; the modal behaviour for
any given information set G can therefore be identified by the darkest cell among the cells in the
column corresponding to that information set.

For each type t we also define the medoid strategy c(t) as the strategy with the smallest average
distance from all the strategies in the type,

c(t) = arg min
{c(j):T (j)=t}

1

|{j : T (j) = t}|
∑

k:T (k)=t

d
(
c(j), c(k)

)
. (7)

The medoid for type t is always a strategy that was chosen by at least one participant classified
as type t. It coincides with the more familiar centroid when the centroid is a member of the set
{c(j) : T (j) = t}. The medoid strategy is one way to express a “most typical” strategy for the type,
and is plotted using small white diamonds in the heatmaps.

In Figure 3, we set each participant i’s type T (i) as their type determined by their contribution
strategy in LINEAR. Then, for each type t and for each game Γ, we take the participants classified
as type t and use their contribution strategies in Γ to construct the heatmap for type t in game Γ.

For participants classified as own-maximisers in LINEAR, the medoid contribution strategy in
each of the three nonlinear games is to contribute exactly the own-maximising number of tokens in
every contingency, except when other participants contribute 20 in SUBSTITUTES. The contribu-
tions of own-maximisers are typically at or close to the contribution strategy given by the reaction
function (4).

Participants identified as strong conditional cooperators in LINEAR also show a consistent pat-
tern across the other games. The medoid contribution strategies in the nonlinear games match
average contributions at or very near one-for-one, but - importantly - only when doing so is so-
cially improving. When contemplating possible low levels of contributions by the rest of the
group, the medoid contribution strategy of strong conditional cooperators selects the own-earnings-

strategies which are HS in the Fischbacher sample, which are classified as OWN, WCC, or SCC in FLT, and the
existence in our data of participants who divide tokens more or less equally between the private account and the
project, who do not feature in the Fischbacher sample.
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(d) COMPLEMENTS

Figure 3: Heatmaps of Stage 2 contributions to the project. Participants are grouped based on the
FLT classification of their Stage 2 contribution strategy in LINEAR.

17



OWN vs. SCC SCC vs. WCC OWN vs. WCC

LINEAR 88.861
(0.005)

70.889
(0.005)

69.877
(0.005)

DOMINANT 40.543
(0.014)

41.294
(0.014)

25.229
(0.259)

COMPLEMENTS 50.173
(0.023)

38.380
(0.021)

20.557
(0.486)

SUBSTITUTES 38.724
(0.021)

33.120
(0.054)

34.292
(0.045)

Table 2: Test statistics for Oja (2010) location test of the difference in the contribution vectors be-
tween types. p-values adjusted for multiple testing using the Benjamini-Hochberg False Discovery
Rate method are reported in parentheses.

maximising contribution. This is particularly striking in SUBSTITUTES, as this results in a non-
monotonic contribution strategy.

Result 2. The type identifications in LINEAR are predictive of behaviour in other games.

Support. The medoid contribution strategies of OWN and SCC are distinct across all four games,
and contribution strategies for both types cluster primarily near the medoid. For OWN, the medoid
contribution strategy is almost exactly the own-earnings-maximising reaction function in all games.
For SCC, the medoid contribution strategy is almost exactly to follow one-for-one matching above
the Nash equilibrium contribution level; below it, the medoid strategy chooses the own-earnings-
maximising contribution level, and avoids Pareto-dominated contribution levels.19 In contrast, the
distribution of contribution strategies for WCC is much more dispersed in all games. The medoid
contribution strategy for WCC in DOMINANT and SUBSTITUTES prescribes contributing a few
more tokens than the own-earnings-maximising amount when responding to group contributions
above the Nash level, while in COMPLEMENTS the medoid contribution strategy is exactly the
own-earnings-maximising reaction function.

To formalise the discussion, we are testing a hypothesis about whether the distributions of
contribution strategies are different among these three groups of participants. Distributions over
strategies can be quantified in various ways; we therefore take two approaches to testing for dif-
ferences in these distributions. Our first approach uses a non-parametric test proposed by Oja
(2010) based on spatial signed ranks. The null hypothesis is that the treatment difference between
samples is equal to the zero vector. Let T be the set of types being considered, and nt be the
number of participants in type t ∈ T . Let R be the vector of centred rank scores, with elements
Ri =

∑
c(j)

1
n

(
c(i)−c(j)
d(c(i),c(j))

)
. The average centred rank score for type t is thenRt =

∑
i:c(i)∈t

1
nt
Ri. B̂

is the covariance matrix given by RR′. To test the null hypothesis that the true difference in ranks

19We say “almost exactly” because both OWN and SCC vary slightly from these descriptions when G = 20 in
SUBSTITUTES, and SCC when G = 0 in COMPLEMENTS. These are information sets which would be reached with
very small probabilities given the empirical distributions of unconditional contributions (see Section 5.3).
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is the zero vector, form the test statistic

Q2 =
∑
t∈T

ntR
′
tB̂
−1Rt. (8)

The limiting distribution of Q2 is χ2
(|T |−1)k, where k is the number of dimensions in the data.20

We report in Table 2 the results of pairwise comparisons among OWN, SCC, and WCC for each
game, adjusting for multiple testing.21 SCC are different in all games from OWN (all p ≤ 0.015)
and from WCC (all p ≤ 0.045). WCC, however, are not well-distinguished from OWN in either
DOMINANT or COMPLEMENTS; in the latter, as noted the upward-sloping reaction function is also
the medoid contribution strategy for WCC.

The advantage of the analysis above is that it takes the whole contribution strategy as the
observation. It allows us to quantify whether strategies are different across types, but not at which
information sets G they differ. Note, however, that the medoids in Figure 3 in all games below the
Nash equilibrium outcome are similar for among OWN, SCC and WCC, while the stereotypical
contribution patterns differ across the three types in information setsG above the equilibrium level.

Result 3. The majority of participants in all three main types do not choose conditionally Pareto-

dominated contributions.

Support. The heatmaps in Figure 3 show there are some instances of inefficient responses below
the own-earnings-maximising level. These occur most frequently in the information sets G below
the equilibrium level. These are accounted for by 8 subjects in COMPLEMENTS, 15 in DOMINANT,
and 16 in SUBSTITUTES. Of these, half are classified as WCC, and the others distributed equally
between OWN and SCC. We identify only four subjects (3% of the sample) who systematically
make Pareto-dominated choices in all the three games; two of these are classified as SCC, one as
WCC and one as OWN. The contribution patterns for information sets G below the equilibrium
level should be similar across types, as already hinted by looking at the heatmaps.

To test for this and for differences between types at any level of the information set, we follow
Barr et al. (2018) and perform, for each information setG, MWW tests comparing the distributions
of contributions between each pair of types. We report in Figure 4 the p-values of these tests,
corrected for the fact we are performing multiple tests.22 OWN and SCC are distinguished at all
information sets G above the symmetric Nash equilibrium level. SCC and WCC are distinguished

20Unlike in the univariate case, in the multivariate analysis there are no natural orderings of the data points. See Oja
(2010) for an overview of the different rules to rank observations using the Manhattan distance.

21Specifically, we apply the Benjamini-Hochberg False Discovery Rate method (Simes, 1986; Benjamini and
Hochberg, 1995). We sort the p-values in ascending rank, divide them by the rank and multiply for the number of
multiple tests performed.

22We report the list of corrected p-values in Table 7 in Appendix B.
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Figure 4: Results of pairwise comparisons of contribution strategies by information set G. Each
point is the p-value of a Mann-Whitney-Wilcoxon test; these are adjusted for multiple testing using
the Benjamini-Hochberg False Discovery Rate method. The vertical reference line is at G = 7,
below which differences among the types are not expected. The horizontal reference line is set at
p = 0.10.

when the contributions of the group exceed the Nash by more than a few tokens; the distinction
is weaker in SUBSTITUTES, in which the reaction function is upward-sloping. Conversely, at
information sets below the symmetric Nash equilibrium outcome, the contributions of the three
types are statistically not distinguishable.

5.2 Modeling the motivations of strong conditional cooperators

We observe generally consistent behaviour among strong conditional cooperators across all games,
as well as a clear distinction of strong conditional cooperators from weak conditional cooperators.
The observations of the strong conditional cooperators’ contribution strategies across four games
places constraints on the possible theoretical explanations for modeling the motivations of these
people.

5.2.1 Inequity aversion

Fehr and Schmidt (1999) propose a model of inequity aversion, in which a player’s utility may be
affected by whether the player’s monetary earnings are greater or less than the monetary earnings
of other players. In our games, inequity in earnings across players is determined entirely by the
different earnings players receive from their respective private accounts. Fix an information set
G, and assume the Stage 1 players all contribute ui = G. Let f(gi, G−i) represent the earnings
to player i from her private account if she contributes gi tokens to the project, and all other play-
ers contribute G−i tokens in total. Note that ∂f

∂gi
< 0. The financial earnings of player N are

πN(gN ;G) = f(gN , (N − 1)G)) + 0.4[(N − 1)G + gN ] and those of a given Stage 1 player i are
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πi(gN ;G) = f(G, (N − 2)G + gN) + 0.4[(N − 1)G + gN ]. The difference in earnings between
player N and player i is

I(gN ;G) ≡ πN(gN ;G)− πi(gN ;G) = f(gN , (N − 1)G))− f(G, (N − 2)G+ gN).

Following Fehr and Schmidt, the utility of player N is given by

UN(gN ;G) = πN(gN ;G)− α
[
−I(gN ;G)

]+ − γ [I(gN ;G)
]−
,

where α ≥ 0 represents the sensitivity of the player to disadvantageous inequity, and γ ≥ 0 the
sensitivity to advantageous inequity. For each of our games, there exists an interval of informa-
tion sets G, including the one which occurs in the symmetric equilibrium, over which interval
I ′(gN ;G) < 0.23 For these information sets,

U ′N(gN ;G) =

π′N(gN ;G) + αI ′(gN ;G) if gN > G

π′N(gN ;G)− γI ′(gN ;G) if gN < G;
(9)

and gN = G is a best response if

γI ′(G;G) ≤ π′N(G;G) ≤ −αI ′(G;G). (10)

Condition (10) holds at the symmetric equilibrium value u? = G irrespective of α and γ. In our
games, monetary earnings are concave in gN given G (strictly for games other than LINEAR), and
d
dG
c?(G) < 1 for all games. Therefore forG > u?, π′N(G;G) < 0, and so the left inequality in (10)

is relevant; one-for-one matching for information sets G > u? would be sustained by an aversion
to advantageous inequity, with progressively larger values of γ required for larger G. For G < u?,
π′N(G;G) > 0, and so the right inequality in (10) is relevant; one-for-one matching for information
sets G < u? would be sustained by an aversion to disadvantageous inequity. This model would
therefore attribute the modal contribution strategy of SCC to significant aversion to advantageous
inequity.

We plot in Figure 5 the contribution predictions in the three non-linear games for illustratively
selected parameters α and γ. Exact one-for-one matching can indeed be rationalised by inequity
aversion – but only if the player is extremely sensitive to inequity (α = 4, γ = 2). These parameters
are far away from the assumptions in Fehr and Schmidt (1999), and from the values of these pa-
rameters observed in other experimental settings (e.g. Blanco et al., 2011). The minority of strong

23I ′(gN ;G) < 0 condition fails to hold only for largeG in COMPLEMENTS and smallG in SUBSTITUTES, in which
certain tokens result in losses if allocated to the private account.
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Figure 5: Contribution predictions under the Fehr and Schmidt (1999) model in the non-linear
games.

conditional cooperators in LINEAR who match one-for-one for G < 7 in DOMINANT, COMPLE-
MENTS, and SUBSTITUTES could therefore be confused, or could be extremely inequity averse.
However, inequity aversion, even at extreme levels, does not on its own produce the distinctive
“hockey stick” shape of the medoid strategy of strong conditional cooperators in DOMINANT nor
the V-shape of the medoid strategy in COMPLEMENTS.

5.2.2 Warm glow giving

Andreoni (1989) proposed that players might contribute more to the project than required to max-
imise their own monetary earnings due to a warm glow feeling arising from the act of voluntary
contribution itself. Consider player N in information set G, again assuming symmetry of contri-
butions among Stage 1 players, and suppose her utility depends on her monetary earnings and the
number of tokens she contributes, U(gN ;G) = h(π(gN ;G), gN). If we assume h is differentiable,
a standard calculation shows the optimal response cWG(G) satisfies

π′(cWG(G);G) = −∂h/∂g
∂h/∂π

.

The function specifying the monetary earnings in our experiment satisfies π′(g;G) − π′(ĝ;G) =

2β2(ĝ − g) for any two contribution amounts g and ĝ, and therefore, for games with β2 > 0,

cWG(G)− c(G) =
1

2β2

× ∂h/∂g

∂h/∂π
. (11)

where c(G) is the contribution strategy for an own-earnings-maximising Stage 2 player.

As G increases, so increases the baseline wealth of the Stage 2 player, which derives from
the Stage 1 contributions to the projects. The modal contribution strategy for SCC specifies the
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own-earnings-maximising contribution forG up to the symmetric equilibrium level of 7; from (11)
this implies that warm glow must be zero (or negligible) for those income levels. To rationalise
the one-for-one matching by SCC for G > 7, (11) indicates that warm glow becomes relevant at
those income levels, and indeed becomes relatively more important than monetary income rapidly.
It would be a remarkable coincidence not only for so many participants to have preferences such
that warm glow kicks in exactly at our equilibrium earnings level, and indeed that this level would
occur exactly at our equilibrium as opposed to another group contribution level.24

5.2.3 Social cooperation norm compliance

Fehr and Schurtenberger (2018) propose a model which incorporates preferences for complying
with a norm, following an idea of Elster (1989). This notion of social cooperation norm compli-

ance offers a plausible account for the contribution strategies we observe among strong conditional
cooperators. In the case of the conditional contribution decision in the p-experiment, the rounded
average contribution G of other players might establish such a norm. A player in Stage 2 who
gives consideration to social cooperation norm compliance would have utility

UN(gN , G; ρ) =

ΠN(gN , G)− ρ
(
gN −G

)2
if gN < G

ΠN(gN , G) if gN ≥ G
(12)

The parameter ρ ≥ 0 captures the strength of any psychological costs that the player incurs by
contributing less than the amount prescribed by the norm set by G. Denote the best response
contribution in game γ for a player with utility of the form (12) as c̃γρ(G). Contributions in ex-
cess of the norm do not incur psychological costs or generate additional benefits; therefore, when
c?γ(G) ≥ G, it follows that c̃γρ(G) = c?γ(G). The stylised stereotypical behaviour of strong condi-
tional cooperators, matching average contributions one-for-one when doing so is not conditionally
Pareto-dominated, is generated by a sufficiently large value of ρ. In particular, for each game γ,
there exists some threshold ργ such that, when ρ > ργ , c̃γρ(G) = G for all information sets G at
which c?γ(G) < G. These threshold values are 0.61 for LINEAR, 0.51 for COMPLEMENTS, 0.76

for DOMINANT, and 0.88 for SUBSTITUTES. If 0 < ρ < ργ , c̃γρ(G) ∈
(
0, G

)
for all informa-

tion sets G at which c?γ(G) < G, corresponding broadly to the behaviour of weak conditional
cooperators. The medoid contribution strategies for WCCs across the four environments are best
rationalised by (12) with values of ρ between 0.015 and 0.03. These parameters contrast sharply
with those which rationalise SCC strategies.

24Many contribution strategies classified as WCC are broadly consistent in a qualitative sense with (11) under the
reasonable supposition that the glow from giving becomes relatively more important than the value of additional
income as the baseline income increases.
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Figure 6: Distributions of unconditional contributions.

LINEAR DOMINANT COMPLEMENTS SUBSTITUTES

LINEAR 1.00

DOMINANT 0.38
(<0.001)

1.00

COMPLEMENTS 0.23
(0.006)

0.38
(<0.001)

1.00

SUBSTITUTES 0.21
(0.011)

0.43
(<0.001)

0.40
(<0.001)

1.00

Table 3: Spearman rank-order correlation of unconditional contributions across games. Numbers
in parentheses are significance levels adjusted for multiple testing using the Benjamini-Hochberg
False Discovery Rate method.
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LINEAR DOMINANT COMPLEMENTS SUBSTITUTES

OWN 0.4
(1.2)

8.8
(3.5)

8.8
(6.4)

10.1
(4.4)

WCC 4.2
(3.6)

9.8
(3.7)

8.5
(4.0)

11.1
(3.9)

SCC 6.1
(6.2)

11.1
(4.4)

10.9
(5.8)

11.9
(4.4)

UNH 12.5
(9.6)

14.5
(4.4)

17.3
(3.2)

13.5
(3.3)

MID 7.8
(4.1)

12.1
(4.0)

9.9
(5.2)

11.3
(4.9)

All 4.3
(5.2)

10.3
(4.1)

9.7
(5.7)

11.1
(4.4)

Table 4: Average and standard deviations (in parentheses) of Stage 1 contributions for each game,
overall and disaggregated by behavioural type classification.
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Figure 7: Empirical cumulative frequencies of unconditional contributions in LINEAR compared
to the Fischbacher sample.

5.3 Unconditional contributions

Turning to the unconditional contributions in Stage 1, Table 4 provides the average and standard
deviation of unconditional contributions by game, for all participants and broken out by each of
the behavioural type classifications.

Result 4. The distribution of unconditional contributions in our data differs from the Fischbacher

sample. In our experiment, fewer participants make a positive unconditional contribution, and the

overall amounts contributed in Stage 1 are also lower. These differences are consistent at type

level.

Support. Figure 7 plots the empirical cumulative frequencies of Stage 1 contributions in LINEAR,
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and the same for the Fischbacher sample. Using the Mann-Whitney-Wilcoxon (MWW) test, the
distribution of our unconditional contributions differs from the Fischbacher sample (r = .385,
p < .001).25 The proportion of participants contributing a positive amount is lower in our data
(z = 3.71, p < .001). The increase in zero contributions accounts for much although not all of
the lower contributions in our data. Conditional on contributing a positive amount, contributions
in our data are also somewhat lower (MWW, r = .429, p = .055).

Therefore, we observe broadly similar Stage 2 contribution strategies in our experiment as in
the Fischbacher sample, we observe a very different distribution of Stage 1 unconditional contribu-
tions. We ask whether the difference in our unconditional contribution data is driven by a certain
type or types. Table 5 summarises the distribution of contributions of the main types in Stage 1 for
these three studies and our experiment. Stage 1 contributions are lower in our data type-for-type.
Of particular note are the Stage 1 contributions for exact free-riders; in our data only 6% (2 of 33)
of these participants contribute a positive amount, in contrast to 22% in the Fischbacher sample.
Strong conditional cooperators, and in particular the one-for-one subset of them, contribute about
half as much in our study as in the Fischbacher sample.

Among the games with interior best-responses for own-earnings maximisers, Figure 6 plots the
distributions of the unconditional contributions. As might be expected from the frequency of zero
contributions in LINEAR, in DOMINANT there is a clear mode of contributions at the own-earnings
dominant contribution of 7. In COMPLEMENTS we observe a sizeable number of unconditional
contributions below the equilibrium of 7, whereas in SUBSTITUTES we observe very few.

Result 5. In contrast to the ranking of games provided by rationalisability, unconditional contri-

butions are highest in SUBSTITUTES, followed by DOMINANT, followed by COMPLEMENTS. The

unconditional contributions of individual participants are positively correlated across games.

Support. The average unconditional contribution is 9.7 tokens in COMPLEMENTS, 10.3 in DOM-
INANT, and 11.1 in SUBSTITUTES. 80 (50) participants contribute more (fewer) tokens in SUB-
STITUTES than COMPLEMENTS (Wilcoxon matched-pairs test, p = .003). Contributions in DOM-
INANT are in between: 75 (48) participants contribute more (fewer) tokens in SUBSTITUTES than
DOMINANT (p = .091), and 75 (54) contribute more (fewer) tokens in DOMINANT than COMPLE-
MENTS (p = .040). Overall, 37.1% of participants contribute at least as many tokens in SUBSTI-
TUTES than DOMINANT and at least as many tokens in DOMINANT than COMPLEMENTS, while
20.0% of participants exhibit the reverse order.

Individual participants are systematically more or less generous in contributing to the project
across games. Table 3 reports the Spearman rank-order correlations of participants’ unconditional

25For MWW tests we report the test statistic in terms of the effect size r, which is defined as the probability
a randomly-selected observation in the first-named sample is greater than a randomly-selected observation in the
second-named sample, with ties broken equiprobably.
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All participants Positive contributions only

Type Sample N Median Mean % Positive N Median Mean

FR Our data 33 0.0 0.1 6% 2 1.5 1.5
Fischbacher 65 0.0 1.8 22% 14 5.5 8.4

OFO Our data 11 0.0 2.9 36% 4 8.5 8.0
Fischbacher 32 7.5 8.6 81% 26 10.0 10.5

CC Our data 78 5.0 4.8 59% 46 7.5 8.2
Fischbacher 191 8.0 8.4 82% 157 9.0 9.8

OWN Our data 48 0.0 0.5 15% 7 3.0 3.1
Fischbacher 124 0.0 3.2 43% 53 5.0 7.5

WCC Our data 33 5.0 4.1 67% 22 6.0 6.1
Fischbacher 65 7.0 7.1 92% 60 8.0 7.8

SCC Our data 40 5.5 6.1 65% 26 9.0 9.4
Fischbacher 109 10.0 10.2 89% 97 10.0 11.4

Table 5: Stage 1 contributions by various Stage 2 types.

contributions. The correlations between contributions in each pair of games are systematically
positive, ranging from 0.21 between LINEAR and SUBSTITUTES to 0.43 between DOMINANT and
SUBSTITUTES. We additionally aggregate unconditional contributions by type in Table 4, which
shows that the pattern of contributing more tokens in SUBSTITUTES than in COMPLEMENTS is not
driven solely by the behaviour of any one type.

There are thus two key observations about unconditional contributions in these three games:
(1) in all of DOMINANT, SUBSTITUTES, and COMPLEMENTS, average contributions exceed the
own-earnings-maximising equilibrium prediction, even among those classified as OWN; (2) the
ordering of average contributions is the opposite of what is predicted by rationalisability.

A candidate ex-post explanation for observation (1) is anticipated reciprocity. Our baseline
analysis assumed the Stage 2 player maximised her own earnings; however, it is possible, if not
probable that at least some players anticipated at least some reciprocity by the Stage 2 players. We
extend our theoretical analysis to the case where Stage 1 players are own-maximisers but anticipate
that the Stage 2 player follows the medoid SCC strategy of own-earnings-maximising below G =

7 and matching one-for-one above. (See Appendix A for details.) Under this assumption, the
equilibrium outcomes satisfy u?S1 + u?S2 + u?S3 ∈ {13, 26} in SUBSTITUTES, u?D1 + u?D2 + u?D3 ∈
{26, 29} in DOMINANT, and u?C1 + u?C2 + u?C3 ∈ {26, 29, 32} in COMPLEMENTS.

We can offer some circumstantial evidence for anticipated reciprocity by comparing the un-
conditional contributions of conditionally-cooperative participants between COMPLEMENTS and
SUBSTITUTES. Recall that the contribution strategies of strong conditional cooperators are par-
ticularly interesting in SUBSTITUTES because they contribute the fewest tokens in response to the
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information set G = 7; either decreasing or increasing unconditional contributions from this level
leads to an increase in their contributions. In contrast, their contribution strategies are increasing in
COMPLEMENTS. We take the set of participants classified as WCC and SCC and consider their un-
conditional contributions in LINEAR. If we assume that these participants approach their decisions
in Stage 1 and Stage 2 in similar ways, we can take their unconditional contribution in LINEAR

as a rough proxy for their beliefs about the general expected contribution levels of other partici-
pants. A conditional cooperator who believes others will contribute few tokens should contribute
more tokens in SUBSTITUTES than in COMPLEMENTS, because they anticipate contributions are
likely to be in the region G < 7 and therefore their preferences for conditional cooperation do not
operate. In contrast, a conditional cooperator who believes contributions of others will be high
should contribute roughly the same in SUBSTITUTES and COMPLEMENTS, because in that case
their preferences for conditional cooperation would encourage them to contribute similar amounts
in either game. We divide conditional cooperators into two groups based on whether their uncondi-
tional contribution in LINEAR is above or below the median of their type. We find that those who
choose unconditional contributions below the median in LINEAR contribute significantly more
tokens in SUBSTITUTES than in COMPLEMENTS (11.2 versus 8.5, Wilcoxon matched-pairs test
p = 0.005). Those with above-median unconditional contributions in LINEAR contribute similar
amounts in SUBSTITUTES and COMPLEMENTS (11.9 versus 11.4, p = 0.541). Anticipated reci-
procity can therefore account for at least some of the unconditional contributions in excess of the
own-earnings-maximising equilibrium.

Observation (2) on the relative contribution levels across the three games is more difficult to
explain. In our two-stage game, the ordering given by rationalisability captures an intuitive ob-
servation. For example, in SUBSTITUTES, lowering one’s unconditional contribution may result
in the Stage 2 player responding with a higher contribution, making up at least some of the short-
fall.26 Because our game is played in two stages, there are few other experimental studies which
are directly comparable. The closest similar result is reported by Mermer et al. (2021), who study
a two-player repeated game in which, like us, earnings are determined by a quadratic functional
form originally used in Potters and Suetens (2009). Also like us, they compare games with strategic
substitutes and strategic complements, and find more cooperation in the first period under substi-
tutes. However, their preferred explanation for their result is that, under their payoff functions, it is
less risky to cooperate in their game with substitutes, in the sense that the difference between the

26Indeed, the existence of the asymmetric equilibria in our games results from the interaction between this intuition
and the discreteness of the experimental game. In the discrete settings, there are contingencies in Stage 1 such that
a one-token change in unconditional contributions leads to a countervailing one-token change in the Stage 2 player’s
response in SUBSTITUTES and COMPLEMENTS. This does not occur in the continuous case, where a one-token
change in an unconditional contribution leads, in the own-earnings-maximising equilibrium, to a change of one-ninth
of a token by the Stage 2 player.
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Type N Mean SE Quartiles

Own-maximisers 48 112.9 78.5 57 77 150
Strong conditional cooperators 42 115.0 70.8 62 97 153
Weak conditional cooperators 32 117.5 80.2 63 97 131

Mid-range 22 201.1 113.1 113 162 253
Unconditional high 4 150.3 100.7 79 117 222

Table 6: Time spent, in seconds, by participants answering control questions, by behavioural type.

payoff from cooperation, and the “sucker” payoff of cooperating when the other player does not, is
smaller in their substitutes game than in their complements game. This is not the case for our payoff
structure: if our payoff functions were used in a standard four-player simultaneous-move VCM,
the loss to unrequited cooperation in COMPLEMENTS would be smaller than in SUBSTITUTES.
We again note that the ranking of these three games in terms of unconditional contributions is
consistent across all behavioural types, and within each game, it is generally the case that OWN
contribute less than WCC who in turn contribute less than SCC, which seems reasonable to expect
given the Stage 2 contribution strategies typical of those types; therefore the patterns in the data
are internally consistent with expectations except with respect to the strategic intuition captured by
rationalisability.

5.4 Response times to control questions

We have observed that strong conditional cooperators across games choose Stage 2 contribution
strategies which appear to follow consistent principles incorporating some sophisticated consider-
ation of the financial incentives of the game. This is suggestive that strong conditional cooperators
are making a well-informed and conscious decision in forming their Stage 2 strategies.

To look for further evidence, we look at the time participants spent reviewing and answering
the battery of comprehension control questions at the end of the instructions.27 Table 6 reports
descriptive statistics on the distribution of these times, by behavioural type.

Result 6. Strong conditional cooperators are not different from own-maximisers or weak condi-

tional cooperators in response time to control questions. Own-maximisers, weak and strong con-

ditional cooperators take significantly less time to complete the control questions than mid-range.

Support. Own-maximisers on average take 112.9 seconds to complete the control questions, strong
conditional cooperators 115.0 seconds and weak conditional cooperators 117.5 seconds. The lower
and upper quartiles of the distribution of response times are likewise similar between the groups.

27Note however, that Bigoni et al. (2016) control for the task comprehension on the level of contribution in a
repeated game, finding no correlation.
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We cannot reject the null hypothesis of these distributions being the same. (Kruskal-Wallis test,
p = 0.84)

Mid-range contributors take notably longer to complete the questions, at 201.1 seconds. This
differs from the response times of own-maximisers, weak conditional cooperators, and strong con-
ditional cooperators, (MWW, p = 0.001; the probability the completion time of a randomly-chosen
MID participant is longer than that of a randomly-chosen OWN/WCC/SCC is .76.)

There are many factors which might feed into how long it takes a participant to complete
the control questions. A participant could spend a longer time on the control questions because
of one or more incorrect answers, as participants could only continue once they gave a correct
response. Participants of different cognitive abilities might need more or less time to process and
respond to a question. Some participants with long response times may simply be less engaged
with the experimental task.28 However, in order to complete the control questions in a relatively
small length of time, a participant would need to be engaged with the task and provide the correct
responses to questions quickly. Our strong conditional cooperators appear to be as well-engaged
and understand the task as well as our own-maximisers.29

5.5 Mid-range and unconditional high contributors

Only 22 participants are classified as mid-range contributors and 4 as unconditional high contrib-
utors. These participants do not show a systematic response to the anticipated contributions of the
other members of their group in LINEAR. Recall that the stereotype strategy for mid-range contrib-
utors is a constant contribution of 10 tokens irrespective of G and the stereotype for unconditional
high is full contribution of 20 tokens.

Figure 8 shows the heatmaps of Stage 2 strategies for these types. With only 4 participants
classified as unconditional high contributors no meaningful conclusions can be drawn. The much
longer control question response times for mid-range types reported in Table 6 suggest further
qualitative comment on their behaviour across games. Their longer times to complete the control
questions successfully suggests they had a harder time comprehending the experiment, were less
engaged with the task, or both.

28The distributions of the completion times for all groups have long right tails.
29We look at response times to the control questions rather than response times on choices because there are con-

founds in interpreting the latter. SCC generally take the longest to complete their Stage 2 decisions, while OWN
complete Stage 2 more quickly. Fast decision times, however, are consistent both with clarity in one’s own responses
and with a lack of deliberation. There is a more prosaic reason why SCC take longer to complete Stage 2, which is
simply that it takes more mouse movement to input the SCC strategies. It is interesting that the participants who adopt
one-for-one strategies do so even though it is more work for them to input it in the software than a constant strategy
such as zero contributions in all contingencies.
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Figure 8: Heatmap of Stage 2 strategies for contribution to the project, for mid-range and uncon-
ditional high types, across games
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The medoid contribution strategy for mid-range contributors in LINEAR is exactly, or nearly,
a contribution of 10 for all G for all four games. The contribution strategies do not shift sys-
tematically in response to the varying financial incentives across the games. The contributions in
these contribution strategies are not uniformly random; contributions closer to 10 tokens are more
frequent than those at either the high or low end of the strategy space. This contrasts with the
clustering results in Fallucchi et al. (2019), in which the heatmap of the analogous “various” group
is roughly uniform for all information sets G. This may be a response to a lack of confidence in
their comprehension of the game, in which a “choose the middle” heuristic may seem the safest
option. Alternatively, some may choose a contribution of 10 tokens on the principle of “share
and share alike,” where sharing is not done in terms of the financial incentives of the game, but
instead based on the strategy space of tokens. Our experiment is not designed to identify these
or other possible motivations for the mid-range contributor strategies, but we can note that as a
group they are not systematically responsive to the economic environment given by the financial
incentives. This suggests the instinctive response of participants who are unengaged, confused,
uncertain, and/or importing heuristics from other settings is to split the token endowment more
or less equally between the private account and the project; and not, in contrast to Hypothesis 3,
reflexively to match the contributions of others one-for-one.

6 Discussion

We investigate the robustness of pro-social behaviour in VCM games by eliciting the behaviour
of the same participants in games with different economic and strategic structures. In the game
with linear payoffs we find proportions of participants who adopt contribution strategies at or near
the two most common stereotypes, exact free-riding and exact one-for-one matching, which are
comparable to previous studies, even though we introduce a novel choice architecture designed to
present financial incentives transparently across all our environments. The contribution strategies
in the linear game are strongly predictive of the contribution strategies specified in the additional
environments we investigate. Taken together, type classifications based on contribution strategies
are fairly robust to how the decisions are elicited, and have predictive value for how participants
will choose in the other, related voluntary contributions environments we study.

Our results support the distinction between strong and weak forms of conditional cooperation,
as proposed in Fallucchi et al. (2019). Strong conditional cooperators, who match the average
contributions of others at or near a rate of one-for-one, generally avoid choosing conditionally
Pareto-dominated contribution levels. This provides evidence in favour of the account that, at least
for many strong conditional cooperators, the adoption of one-for-one matching is informed by the
financial incentives of the experiment. Within the same strategy, strong conditional cooperators
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demonstrate through their responses in some contingencies that they can identify the response
which maximises their own earnings, while in other contingencies they choose larger contributions,
which improve the earnings of the group at a cost to themselves. Among existing theoretical
approaches, this integration of financial incentives and other considerations is best captured by a
model of social contribution norm compliance. This model is distinguished from an explanation
based solely to due to conformity (Bardsley and Sausgruber, 2005) in its inclusion of financial
incentives; in our interpretation, the social norm of matching is applied only when it does not lead
to inefficient outcomes. Other standard models, such as warm glow giving or inequity aversion,
would require assumptions on parameters which are either knife-edge or inconsistent with received
results from experiments in other types of environments.

By applying the conditional contribution procedure in the p-experiment protocol to other envi-
ronments, we also learn more about the properties of the procedure itself. Zizzo (2010) raises the
possibility that the conditional contribution procedure creates a demand effect, by suggesting that
contributions should depend on the actions of others. Participants would therefore be more likely
to specify a contribution strategy which is responsive to the information about the contributions G
of others, even though the financial incentives of the game would indicate otherwise for partici-
pants seeking to maximise their own earnings. We include two environments, SUBSTITUTES and
COMPLEMENTS, in which participants who want to maximise their own earnings should indeed
respond by changing their contributions in response to G. Strong conditional cooperators choose a
systematically different way of conditioning their responses, which rules out experimenter demand
as an explanation for one-for-one matching.

The economically significant difference in our data compared to previous experiments using
the p-experiment protocol is that we observer lower unconditional contributions in LINEAR. Un-
der the assumption that participants choose unconditional contributions according to their beliefs
about the choices of others while using a strategy similar to their stated contribution strategy,
lower unconditional contributions by conditional cooperators (of either type) would imply more
pessimistic beliefs about the anticipated contributions of others (Kölle et al., 2014).30 However,
unconditional contributions by own-maximisers are also lower; indeed almost all participants who
are exact free-riders in their contribution strategy also specify an unconditional contribution of
zero. So beliefs alone cannot explain the lower unconditional contributions in our data.

One explanation for the discrepancy in previous p-experiment studies in which free-riders nev-
ertheless contribute positive amounts in Stage 1 is the use of the strategy method itself. In Stage
2 of the p-experiment, participants are asked to think through the possible contingencies of G that
might arise, and how they would respond; such contingency-by-contingency reasoning might lead

30We did not attempt to measure beliefs in this experiment. The protocol is already complex for a participant to
digest, even with our choice architecture and concrete phrasing of many parts of the instructions.
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own-earnings-maximising participants to realise that, in LINEAR, free riding always maximises
earnings. In contrast, the elicitation of the Stage 1 unconditional contributions does not offer the
opportunity to walk through such best-response reasoning.31 In p-experiment studies, the elicita-
tion of the Stage 2 contribution strategy occurs after the Stage 1 unconditional contribution, so any
experience from strategy-method thinking in Stage 2 comes too late to inform Stage 1 decisions.
This would account for the discrepancy among own-earnings-maximisers contributing zero across
the board in Stage 2 while making positive contributions in Stage 1. In our choice architecture, the
tokens are individually-labeled with their earnings consequences, a feature we intended precisely to
make the own-earnings-maximising choice transparent. Because own-earnings-maximisers receive
this cue in Stage 1 in our design, their Stage 1 and Stage 2 decisions tend to be more consistent.

Based on the re-analysis of Fallucchi et al. (2019) and the data in this paper, about 30% of par-
ticipants choose strongly conditionally cooperative contribution strategies in a linear VCM game.
We show that the contribution strategies a majority of these participants adopt in other games
points to them understanding the financial incentives they face in the games, and reacting to those
in a sophisticated way. These strong conditional cooperators match the average contributions of
others when - and only when - doing so is efficiency enhancing. The “only when” in the previous
statement allows us to rule out confusion, misunderstanding, or a lack of engagement with the
experimental task as an explanation for this behaviour. Most strong conditional cooperators are
expressing a sophisticated response to the social dilemmas posed by the voluntary contributions
environment.

31Anyone who has taught introductory game theory will know from experience that the contingency-by-contingency
reasoning to generate a reaction function does not come naturally to most students!
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Urs Fischbacher and Simon Gächter. Social preferences, beliefs, and the dynamics of free riding in public
goods experiments. American Economic Review, 100:541–546, 2010.
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A Experimental games: Design and perfect Bayesian equilib-
rium analysis

In this section we analyse the four p-experiment games, under the assumption that all players
maximise their own earnings. We show that for each game the Stage 2 player has a unique best
response strategy. Given this, we can identify the set of unconditional contributions which are
rationalisable for the Stage 1 players, and characterise the set of perfect Bayesian equilibria.

We number the three Stage 1 players as i = 1, 2, 3, and the Stage 2 player as i = 4. For LIN-
EAR and DOMINANT the analysis is straightforward, as the allocation which maximises earnings
does not depend on the allocations of other players. In LINEAR, the contribution which maximises
earnings is 0, irrespective of what other players do, and therefore the Stage 2 player’s equilibrium
contribution strategy is c?L(G) = 0 for all G ∈ {0, . . . , 20}, and for the Stage 1 players, the equi-
librium unconditional contributions are u?L1 = u?L2 = u?L3 = 0. In DOMINANT, the contribution
which maximises earnings is 7, and therefore the Stage 2 player’s equilibrium contribution strategy
is c?D(G) = 7 for all G ∈ {0, . . . , 20}, and for the Stage 1 players, the equilibrium unconditional
contributions are u?D1 = u?D2 = u?D3 = 7.

In turning to the analysis of SUBSTITUTES and COMPLEMENTS, our design of these games in-
corporated several considerations. As a starting point, we chose parameters such that the equilibria
of the simultaneous-move VCM with payoff functions ΠS and ΠC would have a unique symmetric
equilibrium with all players contributing 7, which coincides with the unique equilibrium in DOM-
INANT. The p-experiment game is a two-stage game, however. If our games were played with
payoff functions ΠS and ΠC but with continuous action spaces and perfect information about the
actions of the Stage 1 players, there would be a unique equilibrium in each game following the
usual Stackelberg-type logic. In SUBSTITUTES, Stage 1 players would have an incentive to reduce
contributions below 7, anticipating that the Stage 2 player would respond with a higher contribu-
tion; in COMPLEMENTS, the Stage 1 players would have an incentive to increase contributions
above 7, anticipating that the Stage 2 player would respond with a higher contribution.

This intuition applies to our games, but is complicated by the discreteness of the action space
and especially the imperfect information resulting from the rounding of the average contributions
of the Stage 1 players. The latter creates a discontinuity in the reaction function for the Stage
2 player; it is this discontinuity that results in multiple equilibria in games with this structure
(and not just for our chosen parameters). There are Stackelberg-type equilibria, which for our
parameters involve asymmetric contributions among the Stage 1 players, where the asymmetry is
a consequence of the discreteness of action spaces. Meanwhile, the unique symmetric equilibrium
of the game corresponds to the equilibrium of the simultaneous-move version, and therefore to the
dominant strategies in DOMINANT. This equilibrium survives because any of the Stage 1 player
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would have to decrease (in SUBSTITUTES) or increase (in COMPLEMENTS) their contribution by
multiple tokens in order to change the response of the Stage 2 player, and such a unilateral deviation
is unprofitable.

Another important design feature is that the best response for the Stage 2 player is constant
for all G−i consistent with each information set G. This is a consequence of the discreteness of
the action space, and is useful both theoretically and practically. Theoretically, it means that be-
liefs at each information set are not important for computing the reaction functions, and therefore
the Stage 2 player has a dominant strategy response. This is important because the Stage 2 con-
tribution strategies are the focus of our experiment. In LINEAR, the rounding of average Stage
1 contributions is not problematic for the baseline case of own-earnings-maximising players, but
is important practically because it cuts down the number of choices participants need to specify
in their contribution strategies. Our parameter choices allow us to extend the p-experiment de-
sign to our payoff structure, while not losing any information which is strategically relevant to an
own-earnings-maximising player in Stage 2.

The multiplicity of equilibria is a consequence of having discrete action spaces, the rounding
of the average contributions to report to the Stage 2 player, and having a systematic pattern for
how the value of tokens allocated to the private account change. Multiplicity could in principle be
eliminated by manipulating the formula for the value of tokens in the private account to destroy
one of the classes of equilibria, but at the cost of not having an easily-explainable rule for how
these values are determined. Our design retains the nice properties that the symmetric equilibrium
contributions are the same across SUBSTITUTES, DOMINANT, and COMPLEMENTS, and further
that the iteratively rationalisable unconditional contributions are weakly orderable, with contribu-
tions in SUBSTITUTES no more than in DOMINANT, and contributions in DOMINANT no more
than in COMPLEMENTS.

We now turn to the detailed analysis of SUBSTITUTES and COMPLEMENTS.

A.1 Analysis of SUBSTITUTES

We begin with the Stage 2 player’s decision. For any fixed G−4, player 4’s earnings are strictly
concave in her contribution. Therefore, if two contributions (g4, x4) and (g4−1, x4 +1), which are
adjacent in AZ, result in the same earnings, they must jointly be the two (and only two) earnings-
maximising contributions. We can therefore characterise the best response of player 4 by identify-
ing the values of G−4 at which she is indifferent between adjacent contributions.

ΠS
4 (g4, G−4)− ΠS

4 (g4 − 1, G−4) = −
(

1.06 +
.02

3
G−4

)
+ .03 (2(20− g4) + 1) + 0.40

= −.63 + .06(20− g4)− .02

3
G−4. (13)
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Setting this equal to zero, we see that player 4 is indifferent between g4 and g4 − 1 if and only
if Ĝ−4 = 9(9.5 − g4). If G−4 < Ĝ−4, she strictly prefers g4 to g4 − 1, and if G−4 > Ĝ−4, she
strictly prefers g4 − 1 to g4. Note that there are no solutions where g4 and Ĝ−4 are both integers.
Therefore the best response is strict for all G−4, and g4 is a best response to G−4 if and only if
252

3
− 3g4 ≤ G−4

3
≤ 281

3
− 3g4. If this inequality is satisfied for some G−4 such that G−4

3
is an

integer, it is also satisfied for G−4 − 1 and G−4 + 1 for the same g4. Therefore, for all information
sets G, the best response is constant over all total contributions G−4 for which G−4

3
rounds to G.

The beliefs that player 4 might have over the values G−4 which are consistent with information set
G do not affect the best response. The unique rationalisable contribution strategy c?S(G), and the
contribution strategy in any perfect Bayesian equilibrium, is therefore

c?S(G) 2 3 4 5 6 7 8 9

G−4 59-60 50-58 41-49 32-40 23-31 14-22 5-13 0-4
G 20 17-19 14-16 11-13 8-10 5-7 2-4 0-1

Turning to the Stage 1 players, the discrete jumps in the contribution strategy c?S(G) com-
plicate the analysis. It is most straightforward to tabulate the best response function by direct
calculation. Player 1’s reaction function is given by

u2 + u3 ũS1 u2 + u3 ũS1 u2 + u3 ũS1 u2 + u3 ũS1

0 8
1 8 11 7 21 6 31 5
2 8 12 7 22 6 32 5
3 8 13 7 23 6 33 5
4 8 14 7 24 6 34 5
5 8 15 7 25 6 35 5
6 7 16 6 26 5 36 4
7 6 17 5 27 4 37 3
8 5 18 4 28 3 38 2
9 4 19 3 29 2 39 1

10 3 20 2 30 1 40 0

By symmetry the best responses of the other players are identical up to the appropriate permu-
tation of the indices. In many contingencies, the optimal response for a player is to reduce their
contribution by exactly the number of tokens required to trigger a one-token increase by the Stage
2 player. For example, consider a situation in which player 1 believes that u2 + u3 = 18. Consider
any 5 ≤ u1 ≤ 13; this results in 23 ≤ G−4 ≤ 31 and the Stage 2 player responds with a contribu-
tion of 6 at these information sets. Among these, u1 = 6 would result in the highest earnings for
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player 1. However, if instead player 1 contributes u1 = 4, then G−4 = 32 and the Stage 2 player
responds instead with a contribution of 7 tokens. Player 1’s earnings from u1 = 4 are higher than
from u1 = 6; there is a net loss of 0.40 from there being one fewer token contributed overall to the
project, but player 1 is more than compensated by his private account tokens being more valuable
due to the Stage 2 player’s larger contribution.

To identify the rationalisable strategies for the Stage 1 players, without loss of generality as-
sume u?1 ≤ u?2 ≤ u?3. Because u?3 ≤ 8, u?2 + u?3 ≤ 16, and so 3 ≤ u?1. This implies u?1 + u?2 ≥ 6, and
so u?3 ≤ 7. Therefore, 6 ≤ u?2 + u?3 ≤ 14, and the rationalisable strategies are 3 ≤ u?i ≤ 7.

The remaining pure strategy profiles (u?1, u
?
2, u

?
3) in which u?1 ≤ u?2 ≤ u?3 and u?1 is a best

response to u?2 + u?3 are (7, 7, 7) and {(3, 3, 7), (3, 4, 6), (3, 5, 5), (4, 4, 5)}. By inspection, the first
is the unique symmetric equilibrium, in which total unconditional contributions are G−4 = 21, and
the Stage 2 player responds on the equilibrium path with a contribution of 7. The second set are
asymmetric equilibria, in which total unconditional contributions are G−4 = 13, and the Stage 2
player responds on the equilibrium path with a contribution of 8.

A.2 Analysis of COMPLEMENTS

We begin with the Stage 2 player’s decision. For any fixed G−4, player 4’s earnings are strictly
concave in her contribution. Therefore, if two contributions g4 and gi − 4, which are adjacent in
AZ, result in the same earnings, they must jointly be the two (and only two) earnings-maximising
contributions. We can therefore characterise the best response of player 4 by identifying the values
of G−4 at which she is indifferent between adjacent contributions.

ΠC
i (g4, G−4)− ΠC

i (g4 − 1, G−4) = −
(

1.34− .02

3
G−4

)
+ .03 (2(20− g4) + 1) + 0.40

= −.91 + .06(20− g4) +
.02

3
G−4. (14)

Setting this equal to zero, we see that player 4 is indifferent between g4 and g4 − 1 if and only
if Ĝ−4 = 9

(
g4 − 45

6

)
. If G−4 > Ĝ−4, she strictly prefers g4 to g4 − 1, and if G−4 < Ĝ−4, she

strictly prefers g4 − 1 to g4. Note that there are no solutions where g4 and Ĝ4 are both integers.
Therefore, the best response is strict for all G−4, and (g4, x4) is a best response to G−4 if and only
if 3g4 − 141

3
≤ G−4

3
≤ 3g4 − 112

3
. If this inequality is satisfied for some G−4 such that G−4

3
is an

integer, it is also satisfied for G−4 − 1 and G−4 + 1 for the game g4. Therefore, for all information
sets G, the best response is constant over all total contributions G−4 for which G−4

3
rounds to G.

The beliefs that player 4 might have over the values G−4 which are consistent with information set
G do not affect the best response. The unique rationalisable contribution strategy c?C(G), and the
contribution strategy in any perfect Bayesian equilibrium, is therefore
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c?C(G) 11 10 9 8 7 6 5 4

G−4 56-60 47-57 38-46 29-37 20-28 11-19 2-10 0-1
G 20-19 16-18 13-15 10-12 7-9 4-6 1-3 0

Turning to the Stage 1 players, again it is most straightforward to tabulate the best response
function by direct calculation. Player 1’s reaction function is given by

u2 + u3 ũC1 u2 + u3 ũC1 u2 + u3 ũC1 u2 + u3 ũC1

0 5
1 5 11 9 21 8 31 9
2 5 12 8 22 8 32 9
3 8 13 7 23 8 33 9
4 7 14 7 24 8 34 9
5 6 15 7 25 8 35 12
6 6 16 7 26 8 36 11
7 6 17 7 27 11 37 10
8 6 18 7 28 10 38 10
9 6 19 10 29 9 39 10
10 6 20 9 30 9 40 10

By symmetry the best responses of the other players are identical up to the appropriate permutation
of the indices. The intuition for the jumps in the reaction function is parallel to SUBSTITUTES,
except in COMPLEMENTS Stage 1 players may find it profitable to contribute just enough tokens
to ensure an additional token contribution by the Stage 2 player.

To identify the rationalisable strategies for the Stage 1 players, without loss of generality as-
sume u?1 ≤ u?2 ≤ u?3. Because u?2 ≥ 5, u?2 + u?3 ≥ 10, and so 6 ≤ u?1. This implies u?2 + u?3 ≥ 12.
Therefore, the rationalisable strategies are 7 ≤ u?i ≤ 10.

We consider remaining pure strategy profiles (u?1, u
?
2, u

?
3) in which u?1 ≤ u?2 ≤ u?3 in increasing

lexicographic order. The profile (7, 7, 7) is a symmetric equilibrium, in which the total uncondi-
tional contributions are G−4 = 21, and the Stage 2 player responds on the equilibrium path with a
contribution of 7. In order for u?3 ≥ 8, u?1 + u?2 ≥ 19, so the next profile to consider is (9, 9, 10),
at which player 3 is not best-responding. The profile (9, 10, 10) is an asymmetric equilibrium, in
which the total unconditional contributions are G−4 = 29, and the Stage 2 player responds on the
equilibrium path with a contribution of 8.
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A.3 Extension to the case where the Stage 2 player is SCC

As an extension, we characterise the set of rationalisable strategies and the pure-strategy perfect
Bayesian equilibria under the assumption that Stage 1 players maximise their own earnings, while
the Stage 2 player is a strong conditional cooperator.

First, observe that in LINEAR the equilibrium unconditional contributions remain u?L1 = u?L2 =

u?L3 = 0 even if the Stage 2 player follows the strategy ĉSCC(G) = G. Without loss of generality,
consider player 1; we claim that for any given u2 and u3, player 1’s earnings are strictly decreasing
in u1. To see this, suppose player 1 increases their contribution from some level u1 to u1 +1. Either
this results in no change in the Stage 2 player’s contribution, in which case player 1’s earnings
decrease by 0.60; or, it results in the Stage 2 player contributing an additional token, in which case
player 1’s earnings decrease by 0.20. Therefore, ui = 0 remains a strictly dominant strategy for all
Stage 1 players i = 1, 2, 3.

Based on our experimental results, for games γ ∈ {D,S,C} we define the Stage 2 player’s
SCC strategy as

cSCC,γ(G) =

c?γ(G) if G ≤ 7

G if G > 7.

We then proceed to compute the reaction functions for the Stage 1 players under the assumption
the Stage 2 player uses strategy cSCC,γ . The method for enumerating the rationalisable strategies
and equilibrium unconditional contribution profiles is the same as used in the previous subsections;
we present an abbreviated summary for compactness.

For SUBSTITUTES, the reaction function for player 1 is

u2 + u3 ũS1 u2 + u3 ũS1 u2 + u3 ũS1 u2 + u3 ũS1

0 8
1 8 11 7 21 8 31 7
2 8 12 7 22 7 32 6
3 8 13 10 23 9 33 8
4 8 14 9 24 8 34 7
5 8 15 8 25 7 35 6
6 7 16 10 26 9 36 5
7 6 17 9 27 8 37 8
8 5 18 8 28 7 38 7
9 4 19 7 29 6 39 6

10 3 20 9 30 8 40 7

The rationalisable strategies are 3 ≤ u?i ≤ 10. The equilibria with G−4 = 13 previously identified
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remain equilibria in this modified setting. However, the symmetric profile (7, 7, 7) is no longer an
equilibrium. Instead, there is a family of equilibria at profiles (7, 9, 10), (8, 8, 10), and (8, 9, 9),
with G−4 = 26, to which the Stage 2 player responds on the equilibrium path with a contribution
of 9.

For COMPLEMENTS, the reaction function for player 1 is

u2 + u3 ũC1 u2 + u3 ũC1 u2 + u3 ũC1 u2 + u3 ũC1

0 5
1 5 11 9 21 11 31 10
2 5 12 8 22 10 32 12
3 8 13 7 23 9 33 11
4 7 14 9 24 11 34 13
5 6 15 8 25 10 35 12
6 6 16 10 26 9 36 11
7 6 17 9 27 11 37 13
8 6 18 8 28 10 38 12
9 6 19 10 29 12 39 14
10 6 20 9 30 11 40 13

The rationalisable strategies are 8 ≤ x?i ≤ 11. The symmetric profile (7, 7, 7) is no longer an
equilibrium. There exist equilibria at (8, 8, 10) and (8, 9, 9), with G−4 = 26 and a Stage 2 con-
tribution of 9; at (9, 10, 10), with G−4 = 29 and a Stage 2 contribution of 10; and at (10, 11, 11),
with G−4 = 32 and a Stage 2 contribution of 11.

For DOMINANT, the reaction function for player 1 is

u2 + u3 ũD1 u2 + u3 ũD1 u2 + u3 ũD1 u2 + u3 ũD1

0 7
1 7 11 7 21 8 31 10
2 7 12 7 22 10 32 9
3 7 13 10 23 9 33 8
4 7 14 9 24 8 34 10
5 7 15 8 25 10 35 9
6 7 16 10 26 9 36 8
7 7 17 9 27 8 37 10
8 7 18 8 28 10 38 9
9 7 19 10 29 9 39 8

10 7 20 9 30 8 40 10
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The rationalisable strategies are 8 ≤ u?i ≤ 10. The symmetric profile (7, 7, 7) is no longer an equi-
librium. There exist equilibria at (8, 8, 10) and (8, 9, 9), with G−4 = 26 and a Stage 2 contribution
of 9; and at (9, 10, 10), with G−4 = 29 and a Stage 2 contribution of 10.
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B Adjusted p-values of the multiple pairwise comparisons

DOMINANT COMPLEMENTS SUBSTITUTES

OWN SCC OWN OWN SCC OWN OWN SCC OWN
vs. vs. vs. vs. vs. vs. vs. vs. vs.

G SCC WCC WCC SCC WCC WCC SCC WCC WCC

≤ 7 >0.469 >0.460 >0.898 >0.405 >0.333 >0.746 >0.255 >0.086 >0.746
8 <0.001 0.518

>0.746

0.014 0.730

>0.746

0.003 0.333

>0.541

9 0.011 0.246 0.014 0.094 0.020 0.587
10 0.018 0.194 0.001 0.046 0.004 0.086
11 0.003 0.011 <0.001 0.015 <0.001 0.072
12 <0.001 0.003 0.003 0.020 <0.001 0.059
13 <0.001 0.009 <0.001 0.007 <0.001 0.020
14 <0.001 0.006 <0.001 0.002 <0.001 0.039
15 <0.001 0.001 <0.001 0.001 0.001 0.062
16 <0.001 <0.001 <0.001 0.001 <0.001 0.037
17 <0.001 <0.001 <0.001 0.001 <0.001 0.017
18 <0.001 <0.001 <0.001 <0.001 <0.001 0.046
19 <0.001 <0.001 <0.001 <0.001 0.001 0.014
20 <0.001 <0.001 <0.001 <0.001 <0.001 0.014

Table 7: Pairwise comparisons of contribution strategies by information set G. Each cell is
the p-value of a Mann-Whitney-Wilcoxon test; these are adjusted for multiple testing using the
Benjamini-Hochberg False Discovery Rate method. G at or below the Bayes-Nash contribution
level are grouped, as no difference is expected in these contingencies.

C Stage 2 contributions by G

These tables present the raw data used to make the heatmaps in Figure 3. In each table, the columns
represent the information sets G. Each row corresponds to one conditional contribution amount c.
These tables aggregate over all Stage 2 contribution strategies of players classified as the indicated
type.
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G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
5 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 3 3 3 1 1 4
4 0 0 0 0 0 0 1 0 1 1 0 0 1 2 2 2 1 1 5 5 4
3 1 1 1 1 3 1 2 2 1 2 2 2 4 4 3 2 2 3 3 1 1
2 1 0 2 1 0 1 2 2 1 2 4 3 3 3 3 3 4 2 1 2 0
1 0 2 0 3 3 5 2 2 3 3 2 2 2 1 1 1 1 2 3 4 4
0 45 44 44 42 42 40 40 41 41 38 39 40 37 37 37 37 36 36 34 34 33

LINEAR: Own-maximisers (N = 48)

G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 7 8 26
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 18 6
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 19 6 5
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 20 4 3 2
16 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 3 20 5 4 1 1
15 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3 22 7 5 1 2 0
14 0 0 0 0 0 0 0 0 0 0 0 0 1 2 22 6 3 2 0 1 0
13 0 0 0 0 0 0 0 0 0 0 0 0 2 23 4 2 2 1 2 0 0
12 0 0 0 0 0 0 0 0 0 0 0 3 23 4 2 1 1 1 0 0 0
11 0 0 0 0 0 0 0 1 0 0 2 21 4 2 4 1 1 0 0 0 0
10 0 0 0 0 0 0 0 0 0 2 21 5 3 4 2 1 0 0 1 1 0
9 0 0 0 0 0 0 0 0 2 20 9 5 4 2 2 0 0 0 0 0 0
8 0 0 0 0 0 0 0 2 21 10 2 1 1 1 0 0 0 0 0 0 0
7 0 0 0 0 1 1 1 22 7 1 1 2 0 0 0 0 0 0 0 0 0
6 0 0 0 1 0 3 24 7 2 1 2 0 1 0 0 0 0 0 0 0 0
5 1 1 2 1 5 23 7 2 2 3 0 1 0 0 0 0 0 0 0 0 0
4 1 1 0 4 22 5 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 2 4 22 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 4 25 5 2 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0
1 2 24 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 33 8 9 6 5 5 4 3 2 0 0 0 0 0 0 0 0 0 0 0 0

LINEAR: Strong conditional cooperators (N = 40)

G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 2
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 1 1
11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 1 2 2 2 4 3 3 5 4 3 4 5 7
9 0 0 1 0 0 0 0 1 0 3 3 3 2 5 3 2 3 6 8 7 7
8 0 0 0 0 0 0 1 0 4 3 3 5 5 2 6 7 7 5 5 6 6
7 0 0 0 0 0 2 0 4 1 3 2 2 3 4 5 3 2 4 3 4 1
6 0 0 0 0 2 1 5 5 5 4 8 4 9 8 6 9 7 3 0 0 0
5 0 0 0 2 2 9 8 4 3 7 6 9 2 5 5 3 3 4 4 4 2
4 1 1 2 4 9 2 8 7 11 5 6 6 6 4 3 2 1 2 2 1 2
3 2 4 6 14 7 7 1 4 2 4 1 1 0 0 1 1 2 1 1 0 1
2 4 4 12 3 5 4 5 3 2 0 0 0 1 0 0 0 1 3 0 0 0
1 4 13 2 4 2 3 0 0 0 2 1 1 0 1 0 0 0 0 0 0 0
0 22 10 10 6 6 5 5 5 4 0 0 0 0 0 0 0 0 0 0 0 0

LINEAR: Weak conditional cooperators (N = 33)
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G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 8
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0
18 1 0 0 2 1 0 0 0 0 0 0 1 0 0 1 1 1 2 2 1 1
17 0 1 0 0 0 0 1 1 2 2 2 1 2 2 1 0 1 2 2 1 1
16 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 3 2 3 4 2
15 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 3 3 4 2 1 1
14 0 0 1 0 1 1 0 0 0 0 0 0 1 2 5 2 2 0 2 0 2
13 0 1 0 0 0 0 0 0 1 1 0 1 1 3 1 2 0 0 1 2 0
12 0 0 0 0 1 1 1 1 0 1 2 2 3 3 2 2 1 1 3 2 2
11 0 0 1 1 0 0 0 0 0 1 2 5 4 2 2 0 2 1 0 1 0
10 0 0 0 0 0 0 3 2 2 1 4 0 2 1 1 2 2 2 0 0 0
9 0 0 0 0 0 2 0 2 1 4 2 4 2 2 1 1 1 1 0 1 1
8 3 3 5 2 4 1 1 1 6 8 5 5 4 4 5 4 2 3 4 3 3
7 25 28 25 29 27 28 30 36 32 25 26 23 25 23 24 23 24 23 21 21 21
6 3 1 2 2 1 3 6 1 0 2 2 2 0 2 0 0 0 0 0 0 1
5 1 1 2 2 5 7 0 1 0 1 1 2 2 1 2 0 0 0 1 1 0
4 1 1 0 2 6 1 2 0 1 0 0 0 0 1 0 2 2 1 0 2 2
3 1 0 2 5 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
2 0 2 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1 1 6 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 8 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 2 2 2 2

DOMINANT: Own-maximisers (N = 48)

G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 4 4 9 9 19
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 12 5
18 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 2 14 6 2
17 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 4 4 17 4 1 3
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 15 1 2 2 1
15 0 1 0 1 0 0 0 0 0 0 0 0 1 2 4 17 1 2 0 2 0
14 0 1 0 0 0 0 1 0 0 1 1 1 3 4 17 3 3 3 1 0 0
13 0 0 0 0 0 0 1 1 1 0 2 3 3 17 1 1 1 0 0 0 0
12 0 0 1 0 1 0 0 0 1 2 1 3 17 1 1 1 0 1 0 0 0
11 0 1 1 1 0 1 1 1 1 1 1 16 0 0 2 1 1 1 0 0 0
10 1 0 0 0 1 1 0 1 0 5 18 2 3 2 1 0 0 0 0 2 0
9 1 1 3 4 2 4 4 5 6 16 2 3 1 1 1 0 0 0 0 0 2
8 2 3 1 3 5 2 2 2 14 2 1 1 1 0 0 3 3 1 1 0 0
7 21 20 21 18 18 19 20 25 13 9 10 8 6 7 7 4 5 5 6 6 6
6 1 1 1 0 0 2 7 2 0 1 0 0 0 0 0 1 1 1 1 0 0
5 1 0 0 2 4 7 2 1 2 0 2 1 1 1 1 0 0 0 0 0 1
4 0 1 0 1 6 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0
3 2 1 3 8 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 1 3 6 1 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0
1 1 4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 9 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DOMINANT: Strong conditional cooperators (N = 40)

G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1
19 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 1
18 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1 1
17 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 3 2 2
16 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 3 2 2
15 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 3 4 3 0 1 1
14 0 0 0 0 0 0 1 1 0 0 0 0 2 2 4 2 1 1 3 3 2
13 0 1 1 0 0 0 1 2 2 1 2 2 1 4 1 0 1 1 1 0 0
12 1 0 0 1 1 0 2 2 1 1 1 2 2 2 2 3 2 2 2 1 1
11 2 2 2 2 3 5 1 1 1 2 1 3 5 6 5 5 3 5 2 3 3
10 2 1 1 0 0 2 1 1 1 2 4 2 3 3 3 2 3 1 1 2 4
9 2 2 2 3 1 2 2 1 3 6 4 6 4 3 2 2 3 3 4 2 2
8 1 0 2 0 3 0 2 2 5 3 5 3 1 2 2 5 5 2 2 1 2
7 12 14 11 12 12 14 13 12 11 11 10 9 10 9 10 7 7 10 9 8 7
6 0 0 0 6 3 0 2 3 3 2 2 4 2 1 0 1 0 0 1 3 0
5 0 1 2 1 1 5 2 3 3 1 2 1 1 1 1 0 1 0 0 0 2
4 2 2 4 2 5 1 3 1 1 2 0 0 0 0 0 0 1 0 0 1 1
3 2 3 4 4 1 3 2 2 0 0 0 1 1 0 1 0 0 1 1 0 1
2 2 4 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1 3 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

DOMINANT: Weak conditional cooperators (N = 33)

48



G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
18 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0
17 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 2 2 2 2 3
16 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0
15 0 0 1 2 1 0 1 0 0 0 0 0 0 0 1 1 0 2 1 1 1
14 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 2 0 1 0 1
13 1 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 1 1 0 0 0
12 0 0 1 0 0 0 0 0 0 1 0 2 1 1 2 2 1 1 2 4 4
11 0 0 0 0 0 0 0 0 1 0 3 2 1 0 1 1 3 4 28 33 32
10 0 0 0 0 0 1 0 2 1 2 1 1 3 3 4 24 31 30 7 0 0
9 0 0 0 0 1 0 1 0 1 2 3 3 26 34 32 11 2 2 0 0 1
8 0 0 0 1 1 1 2 4 6 27 33 32 9 1 1 0 0 0 0 0 0
7 0 0 1 0 2 5 22 33 31 11 2 2 0 0 0 0 0 0 1 0 0
6 0 3 1 24 31 30 15 3 2 0 0 0 0 0 0 0 0 0 0 0 0
5 26 33 34 12 4 3 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1
4 11 1 1 1 2 1 0 0 0 1 1 1 1 1 1 2 2 2 2 2 1
3 1 1 2 4 2 2 2 1 1 0 0 0 1 0 2 1 1 0 0 0 0
2 0 2 3 1 0 0 1 1 0 0 0 2 2 2 0 0 0 0 0 0 0
1 3 4 2 1 1 1 0 1 2 2 2 1 0 1 1 1 1 1 1 1 1
0 4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

COMPLEMENTS: Own-maximisers (N = 48)

G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 4 7 8 24
19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 1 3 17 5
18 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 2 5 17 2 0
17 0 0 0 0 0 0 0 1 1 2 1 1 1 0 1 1 2 14 2 2 1
16 0 0 0 0 1 1 1 0 0 0 0 1 0 0 2 3 13 2 1 1 0
15 0 1 1 1 0 0 0 0 0 0 0 0 0 2 3 16 6 1 1 0 0
14 1 0 0 0 0 0 0 0 0 0 1 0 2 3 13 3 0 1 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1 3 15 2 0 1 1 1 1 0
12 0 0 0 0 0 0 0 0 0 1 1 2 17 3 2 1 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 1 3 15 1 0 1 1 2 2 3 7 7
10 0 0 0 0 0 0 0 0 2 2 15 4 0 0 1 6 8 7 4 0 1
9 0 0 0 0 0 0 0 1 3 18 3 1 5 13 11 3 0 0 0 0 0
8 1 0 1 0 0 2 4 5 17 6 11 11 8 0 0 0 0 0 0 0 0
7 1 1 1 4 5 5 13 27 13 6 0 0 0 0 0 1 0 0 0 0 0
6 2 3 3 11 21 20 17 3 1 2 2 1 0 0 1 0 1 1 1 1 1
5 15 23 21 11 2 7 2 0 1 0 0 0 0 2 1 1 1 1 0 0 0
4 8 0 0 5 7 2 1 1 0 1 1 1 2 0 0 0 0 0 0 0 0
3 2 2 5 5 3 3 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
2 2 3 5 2 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 2 6 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 6 1 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

COMPLEMENTS: Strong conditional cooperators (N = 40)

G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 1 0 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 2
18 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1
17 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 3 2
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 1 0 1
15 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0 2 2 1
14 1 0 1 0 0 1 0 1 1 0 0 1 2 2 3 2 2 2 1 3 5
13 0 0 1 1 1 1 1 1 0 1 1 0 2 3 4 3 2 3 4 2 2
12 2 1 0 1 1 1 1 1 2 2 2 2 2 2 2 0 3 3 2 3 2
11 0 1 0 1 0 0 0 0 2 0 1 2 2 2 3 3 4 2 8 10 9
10 0 0 1 0 0 1 2 3 1 4 4 5 4 6 4 8 9 10 4 1 2
9 0 0 0 0 0 1 2 2 4 4 6 5 9 11 10 5 0 0 2 1 0
8 0 0 1 2 3 2 3 4 6 11 12 12 6 0 0 0 1 1 0 1 0
7 0 2 3 4 4 6 13 17 13 5 1 0 0 1 1 2 0 0 0 0 1
6 4 4 3 7 13 12 7 0 1 1 0 0 2 1 0 0 0 0 0 0 1
5 11 13 13 7 3 2 0 0 0 1 1 1 0 1 2 1 1 3 1 2 1
4 7 3 1 5 4 3 1 1 1 1 0 1 1 1 1 1 1 0 2 0 1
3 1 2 3 2 0 0 2 2 1 1 2 1 0 0 1 1 2 0 0 0 0
2 1 1 2 1 2 2 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0
1 2 4 3 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

COMPLEMENTS: Weak conditional cooperators (N = 33)

49



G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
18 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
16 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 3 2 2
15 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1
14 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 2 2 2 1 1 0
12 0 0 0 1 1 1 1 0 0 1 2 0 2 2 1 0 0 0 2 2 2
11 0 0 1 0 0 0 0 1 2 1 0 0 1 0 0 0 0 0 0 0 0
10 5 4 3 1 1 1 2 2 2 1 2 4 1 1 1 2 2 2 1 1 1
9 29 30 7 4 1 2 0 1 0 1 3 0 0 0 0 0 0 0 1 2 2
8 0 0 23 28 31 9 6 2 2 4 2 2 4 3 3 2 2 2 1 1 1
7 0 1 0 1 1 23 28 33 10 4 1 1 2 2 2 3 4 3 2 1 1
6 2 0 1 0 1 1 2 2 25 29 31 6 1 1 0 1 1 1 2 2 2
5 0 1 0 3 3 1 2 0 0 0 0 26 29 30 6 2 0 0 1 0 0
4 3 3 4 2 2 5 1 0 0 1 1 1 1 1 27 28 30 7 4 3 1
3 1 2 4 4 5 2 3 5 5 1 1 1 2 2 1 0 1 24 27 29 10
2 6 5 3 2 0 0 0 0 0 1 2 2 2 1 1 2 1 1 0 0 21
1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1

SUBSTITUTES: Own-maximisers (N = 48)

G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 3 3 5 5 13
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 9 2
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 10 3 2
17 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 11 2 1 1
16 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 3 13 2 3 4 3
15 0 0 0 0 0 0 0 0 0 1 1 2 0 0 1 11 2 3 1 0 1
14 0 0 0 0 0 0 0 0 0 0 1 0 0 1 13 2 3 2 0 1 1
13 0 1 1 0 0 0 0 0 0 1 0 0 2 14 1 3 1 1 1 1 1
12 1 0 0 0 1 1 0 0 1 0 0 1 14 2 2 0 0 0 1 0 1
11 0 0 1 1 0 0 0 1 0 1 3 15 0 1 3 0 0 0 1 1 0
10 4 3 1 2 1 1 4 2 2 4 16 4 2 2 1 2 2 2 0 0 0
9 20 21 7 3 3 2 4 3 5 15 0 1 1 2 0 0 0 0 0 0 0
8 0 1 16 20 21 7 2 5 16 2 3 3 3 1 2 0 0 1 1 0 0
7 1 1 1 1 0 18 21 23 3 0 1 0 2 3 1 0 0 0 0 0 0
6 0 1 0 0 3 1 6 2 10 13 14 4 2 1 2 0 0 0 0 1 2
5 2 1 1 2 1 4 1 2 0 1 0 9 11 10 2 3 3 1 1 1 0
4 0 0 1 3 6 1 0 0 0 0 0 0 0 1 10 11 11 3 2 2 2
3 1 1 2 4 0 1 0 0 0 1 1 1 1 0 0 0 0 8 10 10 2
2 6 5 8 1 2 2 1 1 1 1 0 0 0 0 0 0 0 1 1 0 8
1 2 5 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1

SUBSTITUTES: Strong conditional cooperators (N = 40)

G

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
19 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 2 2 2
18 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
17 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 2
15 2 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 2 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 1 0
13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 0 0 2 1 1 2
12 1 1 0 0 0 0 3 3 3 1 1 1 1 1 1 2 1 1 2 2 1
11 2 0 0 1 1 2 0 0 0 0 0 1 1 1 0 2 1 1 0 0 0
10 5 5 5 3 2 1 1 2 4 3 5 3 4 5 4 1 2 1 4 4 5
9 15 13 8 5 7 7 4 2 1 4 3 3 0 1 3 3 2 2 2 2 0
8 1 3 9 12 13 5 3 3 1 4 3 3 3 3 4 1 3 3 1 0 1
7 1 1 2 3 1 8 13 14 10 7 4 4 7 4 3 3 2 2 1 2 1
6 0 1 0 0 2 2 2 4 10 10 13 5 3 4 3 3 1 2 2 1 3
5 0 1 1 1 0 1 3 1 1 0 1 10 9 9 2 3 3 2 2 1 0
4 1 1 1 2 3 1 2 1 1 1 1 0 2 1 9 9 10 3 2 3 1
3 1 1 2 2 1 2 1 1 1 0 1 0 0 2 0 0 2 8 9 9 3
2 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 9
1 1 2 2 2 1 1 0 0 0 0 0 0 0 0 1 1 1 2 1 2 0
0 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 2

SUBSTITUTES: Weak conditional cooperators (N = 33)
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