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Abstract

In most theories of choice under uncertainty, decision-makers are assumed to evaluate acts

in terms of subjective values attributed to consequences and probabilities assigned to events.

Case-based decision theory (CBDT), proposed by Gilboa and Schmeidler, is fundamentally

different, and in the tradition of reinforcement learning models. It has no state space and no

concept of probability. An agent evaluates each available act in terms of the consequences he

has experienced through choosing that act in previous decision problems that he perceives to

be similar to his current problem. Gilboa and Schmeidler present CBDT as a complement to

expected utility theory (EUT), applicable only when the state space is unknown. Accordingly,

most experimental tests of CBDT have used problems for which EUT makes no predictions.

In contrast, we test the conjecture that case-based reasoning may also be used when relevant

probabilities can be derived by Bayesian inference from observations of random processes,

and that such reasoning may induce violations of EUT. Our experiment elicits participants’
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valuations of a lottery after observing realisations of the lottery being valued and realisations

of another lottery. Depending on the treatment, participants know that the payoffs from the two

lotteries are independent, positively correlated, or negatively correlated. We find no evidence

of correlation neglect indicative of case-based reasoning. However, in the negative correla-

tion treatment, valuations cannot be explained by Bayesian reasoning, while stated qualitative

judgements about chances of winning can.

Keywords: case-based decision, correlation, experiment

JEL Classifications: C91, D03, D81

1 Introduction

Most theories of choice under uncertainty that have been proposed by economists or decision
theorists are closely related to expected utility theory, and often are generalisations of that theory.
(For one survey, see Machina and Viscusi, 2014, chapters 12-14.) In these theories, uncertainty is
represented by a set of states of the world, any one of which might obtain. Alternative acts available
to an agent are represented as different assignments of consequences to states. Decision-making
is conceptualised as a process of evaluating acts in terms of the subjective values that the agent
attributes to their consequences and the probabilities or subjective weights that he or she assigns to
the events in which those consequences occur.

However, case-based decision theory (CBDT), proposed by Gilboa and Schmeidler (1995,
2001), is based on a fundamentally different representation of decision problems. In broad terms,
CBDT is in the tradition of psychological theories of reinforcement learning (e.g. Bush and Mosteller,
1953). In CBDT, there is no state space and no concept of probability. The agent is not assumed
to know anything about the outside world except what he has actually experienced as the results of
previous decision making. The agent uses neither forward-looking hypothetical reasoning (“What
will happen if I choose X?”) nor backward-looking counterfactual reasoning (“What would have
happened if I had chosen X?”). He simply evaluates each currently available act in terms of the
consequences he has in fact experienced as a result of choosing that act (or in some variants of the
theory, choosing similar acts) in previous decision problems that he perceives to be similar to the
problem at hand.

Gilboa and Schmeidler (1995, pp. 606, 622) present CBDT and expected utility theory (EUT)
as “complementary theories”. They argue that CBDT is normatively most defensible and descrip-
tively most plausible when “states of the world are neither naturally given, nor can they be simply
formulated”. Decision making in such circumstances is decision under ignorance, as contrasted
with decision under risk (i.e. with known probabilities) and decision under uncertainty (i.e. with
known states of the world but unknown probabilities). For decision under ignorance, Gilboa and
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Schmeidler argue, “the very language of expected utility models is inappropriate”. If this comple-
mentarity claim were taken at face value, any idea of testing CBDT and EUT against one another

would be out of place.

Up to now, most experimental tests of CBDT have been designed on the premise that CBDT
and EUT are complementary theories. For example, Ossadnik et al. (2013) set up an experimental
environment of “structural ignorance” (p. 212), and compare the explanatory power of CBDT
with that of three alternative criteria for decision under ignorance – maximin, maximax, and the
pessimism-optimism criterion of Arrow and Hurwicz (1972). Similarly, Grosskopf et al. (2015)
start from the explicit premise that CBDT “is not proposed as an alternative to or a generalization
of [EUT]” (p. 640), and use an experimental environment in which “EUT is not a reasonable
alternative decision making procedure” (p. 652). They test CBDT against the null hypothesis of
random choice and against a very simple heuristic, related to the “Take the Best” algorithm of
Gigerenzer and Goldstein (1996). Unlike Ossadnik et al. and Grosskopf et al., who test specific
parameterised forms of CBDT, Bleichrodt et al. (2017) report experimental tests of predictions
derived from a very general, non-parameterised version of CBDT. But they too presuppose that
CBDT is intended to be applied to situations in which states cannot be specified (p. 2), and design
their experiment accordingly.1

In contrast, the starting point for our experimental research was the conjecture that CBDT might
have predictive power in situations in which states are well-defined and objective prior probabilities
are known, but expected-utility decision making requires the construction of posterior probabilities
by Bayesian inference from observations of random processes. In terms of a distinction introduced
by Hertwig et al. (2004), these are situations in which decisions are made from experience (i.e.,
the properties of alternative options must be inferred from previous experience), rather than from

description (i.e., those properties are known a priori). In such situations, the “correctness” of
Bayesian reasoning about probabilities is uncontroversial. Nevertheless, such reasoning can be
cognitively demanding and its implications can be counter-intuitive. It is well-known that human
judgements about probability often contravene Bayesian principles in predictable ways, for exam-
ple because of the use of availability and representativeness heuristics (Tversky and Kahneman,
1973, 1983). Charness and Levin (2005) report evidence of deviations from Bayesian reasoning
that are consistent with one of the simplest reinforcement learning rules, the “win-stay-lose-shift”
heuristic. Given that case-based reasoning requires much less cognitive sophistication and is well-
adapted to naturally-occurring problems of decision under ignorance, the hypothesis that human
beings are predisposed to use it is psychologically plausible and worthy of investigation.

1Guilfoos and Pape (2016) report an experimental test of CBDT which uses a very different methodology. They
compare actual behaviour in a repeated Prisoner’s Dilemma experiment with simulated data created by a “software
agent” programmed to use case-based reasoning.
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Since our conjecture has not been endorsed by the proposers of CBDT, we cannot structure
our enquiry as a test of that theory. Our methodological strategy is to test predictions of EUT in
situations in which there are intuitive reasons, derived from the underlying principles of CBDT,
for expecting those predictions to fail in specific ways. This general strategy, used in combination
with disparate intuitions, has led to many important developments in decision theory. The Allais
paradox, common ratio effect, Ellsberg paradox, and preference reversal phenomenon were all
first discovered by researchers who recognised potential limitations of EUT but who, at the time
of discovery, were not in a position to propose a comprehensive alternative theory. These robust
violations of EUT achieved the status of “exhibits” which informed the subsequent development
of alternative decision theories.2 These exhibits show non-random patterns in deviations of actual
behaviour from the predictions of EUT. (For example, the Allais paradox involves comparisons
between responses to two binary choice problems that EUT treats as equivalent. Individuals’
choices are systematically more risk-averse in one problem than in the other.) Such an exhibit
provides evidence that some non-random mechanism, not encompassed by EUT, is at work, but
is not to be interpreted as confirming any fully-specified alternative theory. Our research was
designed to have the potential to create exhibits of this kind which might inform the development
and application of CBDT.

Our experiment tests two related intuitions about how case-based reasoning might lead to sys-
tematic deviations from the behaviour predicted by EUT. The first of these intuitions derives from
a fundamental property of CBDT – act separability. In CBDT, experiences are encoded in mem-
ory as cases; each case consists of a problem, the act that was chosen in that problem, and the
result of that choice (measured in utility units). Given a new problem, a decision-maker assesses
each available act by recalling the previous cases in which that act was chosen, and weighting the
result of each of those choices by a measure of the similarity between the problem in which that
choice was made and the new problem. In this algorithm, when any given act is assessed, the only
items of memory that are used are those that record results that have actually been experienced
as a result of the choice of that act. If memory is used in this way, information that could show
positive or negative correlation between the results of different acts is never retrieved. Thus, one
might expect case-based reasoners to differ from Bayesian reasoners by neglecting information
about correlation.

The second intuition derives from the fact that probability judgements have no role in CBDT.
Case-based reasoning does not lead to the formation of probability judgements that can be clas-
sified as “correct” or “incorrect” according to Bayesian principles. Instead, by moving directly
from memory (encoded without reference to states or probabilities) to decisions, it circumvents

2This methodological strategy, and its role in the development of experimental economics, is discussed by Bardsley
et al. (2010, Chapter 4).
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the whole process of forming probability judgements. When an agent’s case-based reasoning leads
to a violation of EUT, an outside observer may be able to conclude that the agent has behaved as if

she were trying to maximise expected utility but had made erroneous probability judgements, but
the agent herself may have no perception of making or endorsing the judgments that the observer
attributes to her. This raises the possibility that agents might in fact endorse probability judge-
ments that are systematically different from those that are revealed in their decisions when those
decisions are analysed in the theoretical framework used by EUT. It is of course debatable whether
such a difference can properly be called a violation of EUT. (Opinions differ about whether “prob-
ability” in EUT refers to an agent’s actual beliefs, or is merely part of a formal representation of her
decision-making behaviour.) But a pattern of predictable differences between stated and revealed
probabilities would be a surprising phenomenon calling for explanation.

These two lines of investigation have the potential to be mutually corroborating. Suppose that,
in some experiment, participants’ decisions are found to be insensitive to variations in relevant in-
formation about correlation. CBDT would offer a possible explanation for that observation. How-
ever, another possibility might be that the participants were Bayesian reasoners who had misunder-
stood the information given to them, perhaps because of weaknesses in the experimental design.
But suppose it were also found that participants’ stated probabilities showed Bayesian sensitivity
to information about correlation. That would suggest that participants understood that information,
used it when forming probability judgements, but failed to use in when making decisions. That
would give additional credence to CBDT’s explanation of correlation neglect in decisions.

The remainder of the paper is organised as follows. Section 2 describes act separability under
CBDT, and Section 3 discusses stated and revealed probabilities under EUT. Section 4 presents
the experimental design; Section 5 discusses the hypotheses, and Section 6 presents the results.
Section 7 concludes with a further discussion.

2 Act separability and correlation neglect

In the core version of CBDT presented by Gilboa and Schmeidler (1995), the primitives are prob-

lems, acts and results. A problem is interpreted as a description of a unique decision situation in
which the agent faces a non-empty set of acts, one of which must be chosen. The choice of a par-
ticular act in a particular problem leads to a result. A case is a triple (q, a, r) where q is a problem
faced, a is the act chosen in that problem, and r is the result of that choice. The agent’s memory
M is a set of cases, interpreted as those cases that he has in fact experienced. There is a function
u(·) which assigns a real-valued utility u(r) to every possible result r. A utility value of zero is
interpreted as the agent’s aspiration level, in that if the choice of an act results in zero utility, that
result is treated as giving neutral information, and has no effect on the evaluation of the act. There
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is a function s(·, ·) which assigns a real-valued non-negative similarity coefficient s(p, q) to every
ordered pair of problems (p, q). This coefficient is interpreted as a measure of the similarity of
q to p, viewed from p. The theory is concerned with the behaviour of an agent who faces a new
problem p, given a memory M . The agent chooses the available act a that maximises

U(a) =
∑

(q,a,r)∈M

s(p, q)u(r),

where the summation over the empty set is treated as having a value of zero.

Now consider how this model deals with a simple case involving assets with returns that are
potentially correlated. Suppose there are two lotteries L1 and L2. The agent faces a sequence of
decision problems; in each problem, he faces one of the two lotteries and chooses whether or not
to play it. Each time he plays either of these lotteries, the result is either hit, with constant utility
uH > 0 or miss, with constant utility uM < 0. Not betting leads to a utility of zero. If he bets, he
immediately learns whether the outcome was hit or miss. Consider an agent who has faced at least
2n such prior problems (where n ≥ 1), and has chosen to play each lottery exactly n times.3 He
has experienced h1 hits from L1 and h2 hits from L2. As a final problem, he faces some lottery Li,
i ∈ {1, 2}, and has to choose whether or not to play it.

A natural CBDT representation of this situation (Model 1) would treat “play L1” as an act a1
and “play L2” as an act a2, with a0 denoting the act of not playing a lottery. Let Li, i ∈ {1, 2},
denote the set of problems in which lottery Li is offered. It would also be natural to assume that
there is some parameter σ > 0 such that, for i ∈ {1, 2} and for any two problems p, q ∈ Li,
s(p, q) = σ, while s(p, q) = 0 for all other pairs of problems p and q. Then whether the agent
chooses to bet in the final problem is determined by the sign of

U(ai) = σ[hiuH + (n− hi)uM ]

Notice that U(ai) is independent of hj for j 6= i, and that ∂U(ai)/∂hi = σ(uH − uM) > 0. Thus,
the final choice is determined solely by the number of hits that have been experienced on whichever
lottery is faced in the final problem.

An alternative representation (Model 2) would treat “play some lottery” as a single act and
model the difference between L1 and L2 in terms of a difference in similarity.4 Assume there are

3By assuming that the agent’s memory contains the same number of cases of choosing each lottery, we avoid the
need to distinguish between the core version of CBDT and the “average performance” variant in which U(a) is a
similarity-weighted average (rather than sum) of experienced utilities (Gilboa and Schmeidler, 1995, pp. 619–620).

4Model 2 represents this difference in terms of similarity between problems involving L1 and problems involving
L2. Because these sets of problems are disjoint, this is equivalent to treating “bet on L1” and “bet on L2” as distinct
acts and then, as in the Gilboa and Schmeidler (1995, pp. 635–638) “alternative model”, defining similarity as a
relationship between (problem, chosen act) pairs.
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parameters σ, σ′, with σ > 0 and σ ≥ σ′ ≥ 0, such that for all problems pi, qi, qj , where i 6= j,
s(pi, qi) = σ and s(pi, qj) = σ′. Then whether the agent chooses to bet in the final problem is
determined by the sign of

U(ai) = σ[hiuH + (n− hi)uM ] + σ′[hjuH + (n− hj)uM ]

For any distinct i and j, ∂U(ai)/∂hi = σ[uH − uM ] > 0 and σ(uH − uM) ≥ ∂U(ai)/∂hj =

σ′(uH − uM) ≥ 0. Thus, the final choice is potentially determined by the numbers of hits that
have been experienced on both lotteries. Hits on the lottery that is faced in the final problem have a
strictly positive weight that is strictly greater than the weight for hits on the other lottery; the latter
weight may be zero but cannot be negative.

Notice that, in deriving the conditions under which the agent chooses to bet in the final problem,
we have made no assumptions about correlation between the two lotteries. In Model 1, the case-
based reasoner’s final choice depends only on his experience of the lottery he is actually facing.
This is compatible with Bayesian reasoning only in the case of a Bayesian agent with a prior belief
that the two lotteries are independent. In Model 2, the case-based reasoner’s final choice may also
be influenced by his experience of the other lottery, but only in the direction that corresponds with a
Bayesian belief in positive correlation, and only to the extent that the two lotteries are perceived as
subjectively similar. To assume that similarity judgements systematically incorporate prior beliefs
about correlation would be inconsistent with one of the fundamental principles of CBDT – that
decision-makers use only knowledge that is derived from direct experience. This thought points
to a class of situations in which the underlying intuitions of CBDT suggest that there might be
systematic violations of EUT. These are situations in which there is a mismatch between salient
similarity cues and information about correlation that is not embedded in experiences of decision
making. Our experimental design attempts to create such situations.

It is already known that people have a tendency to neglect asset correlation, but the possible
connection between this tendency and CBDT has not been explored. For example, in an asset
allocation experiment, Kallir and Sonsino (2009) found that participants focused their attention on
individual asset returns and that the resulting portfolio decisions did not take into account return
correlations. Eyster and Weizsäcker (2011) found that even when equipped with correlation in-
formation, participants regarded assets independently and resorted to the 1/n heuristic (or naı̈ve
diversification) when allocating investment funds to individual securities. Similarly, in a hypothet-
ical investment choice experiment, Hedesström et al. (2006) observed that participants focused on
individual asset volatility rather than on portfolio volatility. Resulting portfolios were inappropri-
ately diversified and had higher volatility. Correlation neglect has been found to be sensitive to
the magnitude of the stakes involved in the decisions. In portfolio experiments with low stakes,
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Kroll et al. (1988) found that while participants were aware of the correlation in stock returns, cor-
relation information was not reflected in their portfolio choices. However, when the stakes were
significantly increased, participants managed to effectively diversify their asset holdings and the
resulting portfolio choices were closer to the predictions of mean-variance optimisation. In con-
trast to the experiments we have just described, our experiment uses a design that allows us to
investigate attitudes to similarity while controlling and manipulating similarity cues.

3 Stated probabilities and revealed probabilities

EUT legitimates a simple certainty equivalence procedure for eliciting an agent’s subjective rank-
ing of the probabilities of two events. Fix any two (non-null) events E1 and E2. Consider con-
sequences that are measured in money units, and assume that larger consequences are always
preferred to smaller ones. Choose any two consequences x and y such that x > y. Let xEiy

(i ∈ {1, 2}) denote the act that gives x if Ei obtains and y otherwise. Given a suitable continuity
assumption, EUT implies that there exist z1, z2 ∈ (x, y) such that the agent has the preferences
z1 ∼ xE1y and z2 ∼ xE2y. (We use ∼ to denote indifference.) Then the subjective probability
of E1 is greater than (equal to, less than) that of E2 if and only if z1 is greater than (equal to, less
than) z2. Variants of this procedure are widely used in experimental economics to elicit probability
judgements.

This procedure is valid for almost all recognised forms of non-expected utility theory.5 Apart
from continuity, to legitimate this procedure a theory must satisfy the following monotonicity
property. Fix any event Ei and any consequences x > z > y such that z ∼ xEiy. Then for any
event Ej , xEjy is strictly preferred to (indifferent to, strictly less preferred than) z if and only if
Ej is more probable than (equally probable as, less probable than) Ei. Many theories of choice
under uncertainty have this property, even those admitting violations of either the independence or
transitivity axioms of EUT.

However, CBDT does not legitimate the certainty equivalence procedure. Since CBDT ex-
plains individuals’ decisions without making any reference to events or probabilities, there is no
way of using that theory to read off the probabilities of events from observations of decisions. In-
deed, the logic of CBDT suggests that the idea of trying to infer attitudes to events from decisions
is misguided. Notice that, if EUT holds, we can use any pair of non-indifferent consequences to
elicit an agent’s probability ranking of E1 and E2, and the resulting ranking will be the same. In
this sense, the certainty equivalence procedure elicits attitudes to events that are independent of the

5To say that the procedure is “valid” for a specific theory is to say that the theory includes some concept of prob-
ability ranking and that, if an agent behaves according to the theory, the procedure will correctly elicit the probability
rankings that the theory recognises.
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decision problems in which those attitudes are elicited. But this need not be true for a CBDT agent.
For such an agent, indifference between two acts in a particular decision problem is determined
by the agent’s memory of cases that were similar to that problem; if the problem is changed, the
relevantly similar cases can change too.

Once one recognises that there are theories of choice under uncertainty that make no use of
probabilities, it becomes a significant research question to ask whether individuals’ stated proba-
bility judgements are the same as the revealed probabilities that are elicited by the certainty equiv-
alence procedure. Viewed within the conceptual framework of EUT, systematic inconsistencies
between stated and revealed probabilities would be surprising, and would raise doubts about the
construct validity of the concept of probability used in EUT. There would be particular reason
for this kind of doubt if, in a setting in which correct probabilities could be formed by Bayesian
reasoning, stated probabilities had Bayesian properties but revealed probabilities did not.

Our experiment is designed to detect instances of correlation neglect that might be induced by
case-based reasoning. Such behaviour, were it to occur, would be picked up as non-Bayesian prop-
erties of revealed probabilities. As an additional diagnostic tool, we investigate how far revealed
probabilities are consistent with stated probabilities.

In experimental economics, it is standard practice to incentivise survey questions by reformu-
lating them as decision problems with material (usually monetary) consequences. In the present
case, however, the whole point of the enquiry is to discover whether stated probabilities differ from
those that are revealed in decision problems. We believe that this is one of the class of “significant
problems in economics that appear to be capable of experimental investigation only in nonincen-
tivised designs” identified by Bardsley et al. (2010, pp. 336–337). The logic of our investigation
requires that the elicitation of stated probabilities is not incentivised.

4 Experimental design

Our experiment used a set-up similar to that analysed in Section 2. In designing the experimental
interface,6 we tried to set a level playing field for investigating the prevalence of Bayesian and case-
based reasoning. We avoided all explicit references to probability. Information about probability
was always conveyed by describing physical randomising devices, but these descriptions were
designed to make the translation between physical properties and objective probabilities as simple
as possible. Judgements about the “chances” of a winning outcome were elicited on a qualitative
scale. Thus, participants were not primed to think about probability, but no obstacles were placed
in the way of participants who were predisposed to think in this way. The two lotteries seen by any
participant were displayed and described in exactly the same way, except for two differentiating

6The experiment was programmed in z-Tree (Fischbacher, 2007).
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features – colour (blue or yellow) and position (left or right on the participant’s computer screen).
Our background assumption was that, for participants who used Bayesian reasoning, it would be
obvious that colour and position provided no information about probabilities or payoffs. However,
by making these irrelevant features visually salient, we made it more likely that participants who
used case-based reasoning would treat the two lotteries as distinct acts when encoding results in
memory.

Each participant was informed about two lotteries, described as the blue game board and the
yellow game board. Within an experimental session, the boards were the same for all participants.
At appropriate times, these boards were displayed on participants’ screens, vibrantly coloured
in blue or yellow. The blue board always appeared on the left side of the participant’s screen
and the yellow board always appeared on the right. Each game board had 100 numbered boxes,
corresponding with different numbered balls that might be drawn from a bingo cage (the same
cage for both boards). Each box on each board had a predetermined value of either GBP 20 (a
winning box) or zero (a losing box), but this value was not visible to participants until the box was
“opened.” At the start of the session, all boxes were closed.

The experiment had two parts. In Part 1, each participant played ten sample rounds, five using
the blue board and five using the yellow board, in random order. These were described as “samples
that will give you the opportunity to learn as much as you can about the game boards.” In each
sample round, the relevant game board was displayed on participants’ screens. One ball was drawn
from the bingo cage, without replacement. The corresponding box on the board was opened to
show its value, with a green background if it was a winning box and a red background if it was a
losing box. It remained open only until the end of the round. In this way, each participant learned
the values of five of the 100 boxes on each board, selected at random subject to the constraint
that all ten opened boxes would have different numbers. Because no more than one box was
open at any time, participants could access the information revealed in the sample rounds only by
attending to each round as it occurred and by memorising its outcome. This design feature ensured
that participants accumulated memory through experience over time, as is usually assumed in
interpretations of CBDT. Although the sample rounds were not decision problems in the strict
sense of CBDT, the framing was designed to encourage participants to think of each round as a
demonstration of what they might in fact experience, were they to choose to play the relevant game
board. At the end of Part 1, all balls were returned to the bingo cage.7

In Part 2, each participant faced a valuation task relating to one of the two game boards, se-
lected at random, independently for each participant. She was told that she had the opportunity to

7When offering “motivating examples” for CBDT, Gilboa and Schmeidler (2001, pp. 29-34) allow an agent’s
memory to include cases that were not decision problems for her. In one such example, the agent is an employer
choosing between candidates for a job; experiences by previous employers, as reported in reference letters, are treated
as cases.
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play this board – that is, to receive the value of one box on that board, determined by one draw from
the bingo cage. The mechanism of Becker et al. (1964) was used to elicit the minimum amount
of money that each participant was willing to accept in return for giving up this opportunity. Each
participant considered thirty-five possible offer prices, ranging from GBP 0.20 to GBP 20, and
reported whether she was willing to accept each price. In effect, each participant faced thirty-five
binary choice problems, each involving a choice between playing the game board and receiving
some amount of money with certainty. No feedback on the outcome of any of these choices was
provided until the end of the experiment, when one of the offer prices (selected at random) was
revealed as the actual offer price, and participants’ decisions conditional on that price were im-
plemented. Irrespective of whether she had chosen to keep or sell the opportunity to play, each
participant saw an independent draw (with replacement) from the bingo cage. This determined
the number of one box on her board, which was then opened. If she had chosen to keep the op-
portunity, she was paid the value of this box; if not, she was paid the offer price. All participants
received an additional participation fee of GBP 2.

Notice that the valuation task is an instance of the certainty equivalence procedure, as described
in Section 3. Thus, if participants behaved according to EUT (or, indeed, according to any of a
wide class of non-expected utility theories), the reported valuation of any given participant would
be an increasing function of the subjective probability she assigned to winning the final lottery.

At the start of each sample round in Part 1, and also immediately before the elicitation task
in Part 2, each participant reported her judgement about “the chance that this game board [i.e.
the board relevant for that round or task] will reveal a winning box in this round” on a ten-point
Likert scale with end-points labelled “very low” and “very high”. These judgement tasks were not
incentivised.

We used a between-subjects design with three treatments, implementing different properties of
correlation between the lotteries. Each session was pre-assigned to one of the three treatments. The
differences between treatments can be described in terms of the proportions πB and πY of winning
boxes on the final game board on the blue and yellow boards respectively. In each treatment, the
values of πB and πY were determined by a random draw from a joint distribution of (πB, πY ).
Participants were fully informed about the prior distribution, but were not informed about the
actual draw. Thus, they were given sufficient information to construct objective prior probabilities
of winning on each board, which could then be updated by Bayesian inference in light of the
outcomes of the sample rounds. The method by which this information was communicated to
participants is explained in Appendix A.

In all three treatments, and in all realisations of the random mechanism, each board was as-
signed either ten or thirty winning boxes. We refer to a game board with thirty winning boxes as
being a high type board (type H), and a game board with ten winning boxes as a low type board
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(type L). Ex ante, a given board was equally likely to be of the high or low type, and therefore the
ex ante chance of a given box on the board being a winning box was 0.2. Thus, colours and box
numbers had no information content in themselves.

The treatments differed in the joint probability distribution used to assign the types to the two
boards.

• In the independent treatment, the types of the boards were drawn independently.

• In the positive correlation treatment, either both boards were type H , or both boards were
type L. Each possibility was equally likely.

• In the negative correlation treatment, one board was always of type H and the other of type
L. It was equally likely that the blue board was type H and the yellow type L, or vice versa.

For a fully rational Bayesian reasoner, all relevant information about correlation is contained
in the initial joint distribution of board types. However, the assignment of winning boxes to boards
had certain additional features, designed to help participants to understand the correlation proper-
ties of each treatment.

In the positive correlation treatment, the winning numbers were the same for both boards. For
example, consider a participant who observes a win on box 36 of the blue board in a sample round
of the positive treatment. By abstract Bayesian reasoning from the knowledge that there is perfect
positive correlation between πB and πY , she can deduce that the observed win is just as informative
about the probability of winning on the yellow board as it is about the probability of winning on
the blue board. But our design allows her to make a more direct and more concrete inference, from
the knowledge that box 36 on the blue board is a winning box to the conclusion that that box 36

on the yellow board is a winning box. In the negative correlation treatment, the winning numbers
were different for the two boards. Thus, from the knowledge that box 36 on the blue board was
a winning box, a participant could infer that box 36 on the yellow board was a losing box. In the
independent treatment, the assignments of winning numbers to the two boards were independent
of one another.

As a further aid to understanding, each sample round ended with a screen, described as “sum-
maris[ing] what you learned about the game boards in that round.” On this screen, participants
saw the game board they had just played, with the box just opened coloured green or red and
showing “GBP 20” or “GBP 0.” At the bottom of the board there was a message reinforcing this
information. On the other side of the screen there was a message about the corresponding box on
the other game board. For example, consider a round involving the blue game board. Suppose the
announced box number was 4 and its value was GBP 20. Then (irrespective of the treatment) the
message on the blue game board would be “4 is a winning box on the blue game board.” In the
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positive correlation treatment, the message on the other side of the screen would be “4 is a winning
box on the yellow game board.” In the negative correlation treatment, it would be “4 is a losing
box on the yellow game board.” In the independent treatment, it would be “4 may be a winning
box or may be a losing box on the yellow game board.” Throughout Part 1, the computer screen
also displayed a header that constantly reminded participants of the correlation between the two
game boards.

Full instructions for the experiment, including examples of screenshots, are given in an online
appendix.

5 Hypotheses

Let i index the game board offered to the participant in Part 2, and j denote the other game board.
Therefore, i, j ∈ {blue, yellow}, with i 6= j. Let hi denote the number of winning boxes observed
among draws from board i in Part 1, and hj the number of winning boxes observed among draws
from board j in Part 1. We refer to the pair (hi, hj) observed by a participant as their memory.
The values of hi and hj are sufficient to compute the Bayesian posterior probability that board i is
type H , which we denote ρi(hi, hj). Table 1 presents these posteriors for each treatment, for the
memories realised in our data.8

For a given participant, EUT predicts that the stated valuation of a game board will be in-
creasing in the posterior. However, because participants may vary in terms of risk attitudes, this
relationship need not be linear, nor the same for all participants. Furthermore, it is unreasonable to
expect participants to assess posteriors in a numerically precise way. Therefore, for each treatment
I (independent), P (positive correlation), and N (negative correlation), we define corresponding
reflexive, complete, and transitive orderings �E

I , �E
P , and �E

N over memories which are based on
the qualitative properties of the Bayesian posterior. For any two memories (hi, hj) and (h′i, h

′
j) we

define these orderings as follows:

• In the independent treatment, the posterior is determined entirely by the number of winning
boxes hi observed on board i. We therefore define �E

I by

(hi, hj) �E
I (h′i, h

′
j)⇐⇒ hi ≥ h′i.

• In the positive correlation treatment, the posterior is determined entirely by the total number
of winning boxes hi + hj observed, irrespective of board. We therefore define �E

P by

(hi, hj) �E
P (h′i, h

′
j)⇐⇒ hi + hj ≥ h′i + h′j.

8See Appendix B for notes on calculating these.
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ρi(hi, hj) hj = 0 hj = 1 hj = 2

hi = 0 .216 .216 .216
hi = 1 .518 .518 .518
hi = 2 .818 .818 .818

(a) Independent

ρi(hi, hj) hj = 0 hj = 1 hj = 2

hi = 0 .065 .216 .541
hi = 1 .216 .541 .844
hi = 2 .541 .844 .965

(b) Positive correlation

ρi(hi, hj) hj = 0 hj = 1 hj = 2 hj = 3

hi = 0 .500 .201 .056 .013
hi = 1 .799 .500 .190 .050
hi = 2 .944 .810 .500 .178
hi = 3 .987 .952 .822 .500

(c) Negative correlation

Table 1: Bayesian posterior probabilities ρi(hi, hj) as a function of the memory (hi, hj), for each
treatment.
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• In the negative correlation treatment, the posterior is increasing in the number of winning
boxes observed on board i, and decreasing in the number of winning boxes observed on
board j. The difference of the number of winning boxes between the boards, hi − hj , is not
alone sufficient to determine the posterior. However, among memories for which hi−hj = m

for some m, the posterior varies by only a small amount, compared to the variability of the
posterior between two memories for which hi − hj 6= h′i − h′j . We therefore define the
ordering �E

N based on the difference hj − hj ,

(hi, hj) �E
N (h′i, h

′
j)⇐⇒ hi − hj ≥ h′i − h′j.

We derive relations of strict ordering �E and equivalence ∼E from �E in the usual way.

The ranking of a memory is therefore determined by a treatment-specific summary statistic,
which we write M I(hi, hj) = hi for the independent treatment; MP (hi, hj) = hi + hj for the
positive correlation treatment; and MN(hi, hj) = hi − hj for the negative correlation treatment.
The summary statistic M t (for t ∈ {I, P,N}) therefore represents the ordering �E

t .

The experimental design assigns each participant at random to a memory (hi, hj) determined
by the randomly-selected sample box numbers and the game board offered. Each participant k
reports a valuation, which we denote vk(hi, hj). Under EUT, and indeed any decision theory in
which valuations are monotonic in the Bayesian posterior, valuations will increase in the summary
statistic. The following hypothesis is therefore an implication of EUT.

Hypothesis 1. For each treatment t, the reported valuations are increasing in M t, the summary

statistic of the memory.

Our interest is in whether actual behaviour deviates from EUT in directions that would be
indicative of case-based reasoning. Our design is based on the working assumption that, in all
three treatments, participants perceive plays on boards of the same colour as more similar to one
another, than to plays on boards whose colours are different. Given this assumption, the underlying
principles of CBDT suggest the following case-based weighting conjecture: when participants
report valuations of the offered board i, they give greater weight to winning boxes observed on that
board than to winning boxes observed on board j. (Wins on board j might be given zero weight,
as in Model 1 of Section 2, or positive but lower weight than wins on board j, as in Model 2.)
Following the methodological strategy of looking for exhibits (see Section 1), we focus on cases in
which this conjecture implies unambiguous biases in behaviour relative to EUT predictions. Such
biases are implied only in the positive and negative correlation treatments.

We formalise the case-based weighting conjecture by defining an alternative ranking of mem-
ories in the positive correlation and negative correlation treatments.
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• In the positive correlation treatment, fix some m ∈ Z+ and consider the set of memories
{(hi, hj) : hi + hj = m}. This set is an indifference class of the ordering �E

P . The case-
based weighting conjecture implies a strict ranking �C

P of the members of this set,

(hi, hj) �C
P (h′i, h

′
j)⇐⇒ hi + hj = h′i + h′j = m and hi > h′i. (1)

• In the negative correlation treatment, fix some m ∈ Z and consider the set of memories
{(hi, hj) : hi − hj = m}. This set is an indifference class of the ordering �E

N . The case-
based weighting conjecture implies a strict ranking �C

N of the members of this set,

(hi, hj) �C
N (h′i, h

′
j)⇐⇒ hi − hj = h′i − h′j = m and hi > h′i. (2)

The following hypothesis is an implication of the case-based weighting conjecture:

Hypothesis 2. For a given treatment t ∈ {P,N}, consider any set of memories {(hi, hj) :

M t(hi, hj) = m} for somem. Within this set, reported valuations are increasing in hi, the number

of winning boxes observed on the offered board.

Recall that each participant reported judgements about the “chance” of seeing a winning num-
ber prior to each box being revealed, both in Part 1 and Part 2. To allow meaningful comparisons
across participants, we normalise each participant’s use of the Likert scale relative to that partic-
ipant’s judgement of the chance of winning on the first Part 1 game board. At the stage of the
experiment at which this first judgement was reported, all participants had the same information,
and that information implied that the objective probability of seeing a winning box was 0.2. For
each participant, we define the variable expectation difference, which takes on the value +1 when
the participant reports a higher chance in Part 2 than at the start of Part 1; −1 when the participant
reports a lower chance in Part 2 than at the start of Part 1; and 0 when the chances reported in Part
2 and at the start of Part 1 are the same. Expectation difference can be interpreted as a self-reported
judgement about whether the probability of seeing a winning box on the relevant board i, given the
participant’s memory (hi, hj), is greater than, less than, or equal to 0.2. Thus, if stated probabilities
are consistent with Bayesian reasoning, the following hypothesis will hold:

Hypothesis 3. For each treatment t, the reported expectation differences are increasing in M t, the

summary statistic of the memory.

Because CBDT makes no reference to probability, it does not support any particular conjecture
about stated probabilities.
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6 Results

We conducted a total of thirty sessions in March 2014; there were ten sessions for each treatment.
Each session had six to eight participants and lasted 45 minutes. Average earnings were GBP
8.40, and ranged from GBP 2.00 to GBP 22.00. All 226 participants (119 male, 107 female) were
recruited from the standing participant pool recruited by the Centre for Behavioural and Experi-
mental Social Science at the University of East Anglia, managed via ORSEE (Greiner, 2015).

The experimental design assigned participants randomly to experimental sessions, and there-
fore to treatments. Furthermore, because the sample results from the game boards were themselves
determined at random, the design randomly assigned participants to realised memories (hi, hj).
Therefore, the data of any pair of memories (hi, hj) 6= (h′i, h

′
j) are independent samples.

Our hypotheses make predictions about how valuations and expectation differences change as
a function of the observed memory. We base our statistical analysis on nonparametric tests using
rank orders. These tests are well-suited to our hypotheses in that our hypotheses only concern
trends in valuations as function of hi and hj . In addition, because our design uses a discrete and
predetermined set of questions to elicit valuations, we obtain only a bracketing interval around
each participant’s valuation. These intervals are non-overlapping and are therefore ranked from
high to low, which is sufficient for the rank order approach.

Our choice architecture did not require participants to give a monotonic response to the ques-
tions implementing the Becker et al. procedure. Participants could indicate simultaneously that
they accepted some price while rejecting a strictly higher price. Of the 226 participants, 210 pro-
vided monotonic responses to the valuation questions. In addition, 4 participants gave responses
which were monotonic with the exception of one isolated price, such that, if the response to that
price were inverted, the resulting schedule is monotonic. We neglect the isolated non-monotonic
response for those 4 participants and include them in our analysis. We drop the remaining 12 par-
ticipants. For each of the 214 participants in our sample so defined, we define their valuation as
the lowest accepted price.9

Table 2 summarises the data on stated valuations. For each treatment and memory, we report
the median valuation, as well as the first and third quartiles. We group memories for each treatment
t according to �E

t , and provide the expected payoff of a single play of board i given the posterior.
We note that this expected payoff is lower than the median stated valuation for most memories.
This tendency to overvalue a gamble with low probability of winning a large amount is observed,
for example, in preference-reversal experiments such as Seidl (2002), and overweighting of small
probabilities of gains is a central feature of prospect theory (Kahneman and Tversky, 1979). In the

9More precisely, the revealed valuation falls within the interval between the highest rejected price and lowest
accepted price. We identify each interval by its upper endpoint for conciseness.
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Posterior .216 .518 .818
RNEUT 286 407 527

(hi, hj) = (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1)

N 8 7 8 8 14 11 8 11
Quartile 1 150 300 270 300 300 260 450 500
Median 260 400 475 425 500 400 675 600

Quartile 3 650 800 750 850 750 500 800 800

(a) Independent

Posterior .065 .216 .541 .844 .965
RNEUT 226 286 416 536 586

(hi, hj) = (0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (1,2) (2,1) (2,2)

N 7 15 13 4 7 4 8 6 8
Quartile 1 200 200 260 475 350 675 525 450 550
Median 220 350 400 500 500 725 650 525 650

Quartile 3 500 700 500 650 750 1375 1000 800 900

(b) Positive treatment

Posterior .013 .056 .190 .201 .500 .799 .810 .944 .987
RNEUT 205 223 276 280 400 520 524 578 595

(hi, hj) = (0,3) (0,2) (1,2) (0,1) (1,1) (2,2) (1,0) (2,1) (2,0) (3,0)

N 2 9 3 9 7 7 11 4 11 4
Quartile 1 280 400 100 200 500 400 300 550 350 450
Median 490 600 500 450 750 550 500 700 500 500

Quartile 3 700 750 500 600 1200 1100 750 900 800 600

(c) Negative treatment

Table 2: Summary data for valuations by treatment. N is the number of participants to observe
each memory. Posterior refers to the Bayesian posterior, given the memory, that the offered board
i is of the high type, and RNEUT gives the expected payoff of a single play of board i given the
posterior. All values given in pence.
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independent and positive treatments, median valuations generally increase in the posterior proba-
bility; the median valuation is roughly 100 pence above the expected payoff. In contrast, in the
negative treatment valuations do not appear to vary systematically as a function of the posterior.
For example, given the memory (hi, hj) = (2, 0), the expected payoff to a play of board i is 578
pence, contrasting with an expected payoff of 223 given the memory (hi, hj) = (0, 2). However,
the median valuation in (2, 0) is actually lower than that in (0, 2).

To give a more complete picture of how the distribution of valuations changes as a function of
the memory, we provide measurements of effect sizes for each pair of memories within a treatment.
Consider two memories (hi, hj) and (h′i, h

′
j), and let v be a randomly-chosen valuation observed

at (hi, hj) and v′ a randomly-chosen valuation observed at (h′i, h
′
j). The effect size is computed as

Pr(v > v′) + 1
2
Pr(v = v′). These are reported in Table 3, in which each cell is the probability

that a valuation drawn from the row memory is greater than a valuation drawn from the column
memory. This effect size is directly related to the test statistic used in the Mann-Whitney-Wilcoxon
(MWW) test for equality of distributions. As a convenience, we indicate in Table 3 the pairs of
memories for which the effect size is statistically different from one-half using the MWW test.

Because memories are sorted in order of the posterior probability that board i is a high-type
board, it would be expected under EUT to see effect sizes less than one-half towards the top-right of
the matrix. This pattern is observed broadly in the independent and positive correlation treatments.
However, no clear pattern emerges in the negative correlation treatment.

The MWW test is suitable for comparing the distributions of valuations in two groups. In some
circumstances, our hypotheses require comparing across three or more groups. For this purpose
we adopt the test for trend of Cuzick (1985). This test extends the rank-order calculation of the
MWW test to three or more groups; for two groups Cuzick (1985)’s test coincides with MWW
exactly. This test requires ordering the groups being compared. The null hypothesis is there is no
trend (increasing or decreasing) in the data across the groups, against the alternative hypothesis of
a trend.

Result 1. In the independent and positive correlation treatments, valuations are increasing as a

function of the summary statistic M t(hi, hj) of the memory. In the negative correlation treatment,

we cannot reject the null hypothesis of no trend.

Support. Table 4 reports an aggregation of the pairwise comparisons as shown in Table 3, where
pairwise comparisons are made after grouping valuations by the corresponding summary statis-
tic of the memory. If valuations are increasing in the summary statistic, effect sizes below .5 are
expected. This is observed in the pairwise comparisons under the independent and positive cor-
relation treatments. Cuzick’s test confirms the trend is significant (p = .049 for the independent
treatment and p < .001 for the positive correlation treatment). In contrast, the direction of the
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Posterior .216 .518 .818

(hi, hj) (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1)
N 8 7 8 8 14 11 8 11

(0,0) 8 — .29 .33 .35 .34 .44 .30 .26*
(0,1) 7 — .56 .47 .45 .62 .38 .32
(0,2) 8 — .48 .47 .61 .38 .38
(1,0) 8 — .48 .62 .42 .36
(1,1) 14 — .68 .41 .37
(1,2) 11 — .22** .21**
(2,0) 8 — .50
(2,1) 11 —

(a) Independent

Posterior .065 .216 .541 .844 .965

(hi, hj) (0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (1,2) (2,1) (2,2)
N 7 15 13 4 7 4 8 6 8

(0,0) 7 — .47 .33 .21 .32 .11** .13** .30 .13**
(0,1) 15 — .46 .32 .39 .18** .24** .36 .26*
(1,0) 13 — .31 .38 .06*** .19** .36 .15***
(0,2) 4 — .59 .19 .30 .54 .31
(1,1) 7 — .20 .31 .42 .29
(2,0) 4 — .64 .75 .73
(1,2) 8 — .66 .51
(2,1) 6 — .34
(2,2) 8 —

(b) Positive treatment

Posterior .013 .056 .190 .201 .500 .799 .810 .944 .987

(hi, hj) (0,3) (0,2) (1,2) (0,1) (1,1) (2,2) (1,0) (2,1) (2,0) (3,0)
N 2 9 3 9 7 7 11 4 11 4

(0,3) 2 — .33 .67 .58 .21 .43 .45 .25 .32 .44
(0,2) 9 — .74 .70 .38 .51 .59 .33 .53 .60
(1,2) 3 — .46 .19 .24 .33 .08* .27 .33
(0,1) 9 — .22* .33 .38 .18* .31 .38
(1,1) 7 — .58 .68 .48 .63 .71
(2,2) 7 — .57 .38 .53 .59
(1,0) 11 — .30 .43 .51
(2,1) 4 — .67 .81
(2,0) 11 — .57
(3,0) 4 —

(c) Negative treatment

Table 3: Effect sizes for comparisons of valuations, pairwise by outcome of sample draws. Each
cell is the probability that a randomly-selected valuation reported given the memory in the row is
greater than a randomly-selected valuation reported given the memory in the column. Asterisks
indicate significance of the difference using the Mann-Whitney-Wilcoxon test; * at 10%, ** at 5%,
*** at 1%.
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Comparison Independent Positive Negative

M = −3 vs M = −2 .38
M = −2 vs M = −1 .62*
M = −1 vs M = 0 .42
M = 0 vs M = 1 .47 .40 .50
M = 1 vs M = 2 .33** .30** .39
M = 2 vs M = 3 .46 .66
M = 3 vs M = 4 .44

Cuzick p .049 < .001 .58

Table 4: Test for increasing valuations as a function of the summary statistic. Each row reports
the effect size of the pairwise comparison of valuations given two summary statistics. Asterisks
indicate significance of the pairwise difference using the Mann-Whitney-Wilcoxon test; * at 10%,
** at 5%, *** at 1%.

pairwise comparisons is mixed for the negative correlation treatment, with two of the six pairwise
comparisons going in the opposite direction. The null hypothesis of no systematic trend cannot be
rejected (p = .58).

Result 2. There is no significant evidence of the systematic deviations from EUT implied by the

case-based weighting conjecture.

Support. Hypothesis 2 proposes that, in the positive and negative correlation treatments and condi-
tional on a realised value m for the summary statistic, valuations will be increasing in the number
hi of winning boxes observed on the offered board. Conditional on a value of m, we conduct Cuz-
ick’s test for trend in hi, and report the results in Table 5. Each row corresponds to one conditional
test. For each row, we repeat the pairwise effect sizes drawn from Table 3. If an increasing trend in
hi were present, we would expect effect sizes in excess of .5. No individual pairwise comparison,
nor any conditional test for trend, is significant. Because of the random assignment of participants
to memories, each of the conditional tests are independent of each other, and therefore we can
combine the results of the conditional tests into a grand test using Fisher’s combined probability
method. We cannot reject the null hypothesis of no trend overall (p = .33 for positive correlation
and p = .41 for negative correlation).

We now turn to the data on stated judgements. Table 6 shows, for each Bayesian posterior,
the breakdown of expectation differences across participants. Overall there is a general trend of
decreased optimism, in that around half of the participants report a less optimistic judgement prior
to Part 2 than at the start of Part 1. Given that the initial probability of seeing a winning box
was only 0.2, the direction of this trend is consistent with the known tendency for rare events
to be given greater weight when decisions are made from description – that is, on the basis of a
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Pairwise effect size

Conditional on hi = 0 vs. hi = 1 hi = 1 vs. hi = 2 Cuzick p

hi + hj = 1 .46 .75
hi + hj = 2 .59 .20 .20
hi + hj = 3 .66 .33

Combined .33

(a) Positive treatment

Pairwise effect size

Conditional on hi = 0 vs. hi = 1 hi = 1 vs. hi = 2 Cuzick p

hi − hj = −1 .54 .85
hi − hj = 0 .42 .61
hi − hj = 1 .71 .24

Combined .41

(b) Negative treatment

Table 5: Test for trends predicted by the similarity conditional on the summary statistic of a mem-
ory. The pairwise effect sizes are for comparisons as reported in Table 3. The p-value for each
conditional test for trend is reported in each row. The overall p-value reported is calculated using
Fisher’s combined method.

priori information about the properties of random mechanisms – than when they are made from
experience – on the basis of trial-by-trial experience of the realisations of random mechanisms
(Hertwig et al., 2004). In our experiment, judgements about the first Part 1 game board could be
made only from description, while judgements about the Part 2 board could take account of both
description and experience.

Table 7 presents effect size comparisons on the judgements data. Because we code only the
sign of the change in reported judgement from the first period to the last, our measure of judgement
is coarse. We therefore aggregate judgements by the level sets ∼E given by EUT. All treatments
show a general pattern of small effect sizes in the upper-right of the table, which indicates a broad
consistency of judgements with Bayesian posteriors.

Result 3. In all treatments, judgements are more optimistic, as measured by expectation differ-

ences, when the Bayesian posterior probability is higher.

Support. We follow the same approach as in Result 1, using the expectation differences in place
of valuations. The details for Cuzick’s test for trend are summarised in Table 8. If judgements
are more optimistic when the Bayesian posterior is higher, then we expect effect sizes to be less
than .5. This is generally the case for all three treatments. Notably, for the negative correlation
treatment, this contrasts sharply with the data for the corresponding Result 1 test in Table 4. We
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ρi(hi, hj) Decrease No change Increase Total

.216 15 7 2 24

.518 23 9 2 34

.818 8 4 7 19
Total 46 20 11 77

(a) Independent

ρi(hi, hj) Decrease No change Increase Total

.065 6 1 1 8

.216 17 8 4 29

.541 9 5 1 15

.844 7 4 4 15

.965 2 4 2 8
Total 41 22 12 75

(b) Positive correlation

ρi(hi, hj) Decrease No change Increase Total

.013 2 1 0 3

.056 7 1 3 11

.190 2 0 1 3

.201 5 4 2 11

.500 8 5 2 15

.799 7 1 4 12

.810 0 2 2 4

.944 3 3 5 11

.987 1 1 2 4
Total 35 18 21 74

(c) Negative correlation

Table 6: Expectation difference, as a function of posterior.
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hi 0 1 2
N 24 34 19

0 24 — .53 .35*
1 34 — .33**
2 19 —

(a) Independent

hi + hj 0 1 2 3 4
N 8 29 15 15 8

0 8 — .43 .44 .36 .27*
1 29 — .52 .42 .33
2 15 — .40 .30*
3 15 — .43
4 8 —

(b) Positive correlation

hi − hj -3 -2 -1 0 1 2 3
N 3 11 14 15 16 11 4

-3 3 — .44 .38 .41 .32 .23 .21
-2 11 — .46 .49 .41 .33 .32
-1 14 — .53 .44 .35 .33
0 15 — .40 .31* .29
1 16 — .43 .41
2 11 — .48
3 4 —

(c) Negative correlation

Table 7: Effect sizes for comparisons of judgements, pairwise by outcome of sample draws. Each
cell is the probability that a randomly-selected judgement reported after the outcome in the row is
greater than a randomly-selected judgement reported after the outcome in the column. Asterisks
indicate significance of the difference using the Mann-Whitney-Wilcoxon test; * at 10%, ** at 5%,
*** at 1%.

Comparison Independent Positive Negative

M = −3 vs M = −2 .44
M = −2 vs M = −1 .46
M = −1 vs M = 0 .53
M = 0 vs M = 1 .53 .43 .40
M = 1 vs M = 2 .33** .52 .43
M = 2 vs M = 3 .40 .48
M = 3 vs M = 4 .43

Cuzick p .084 .048 .030

Table 8: Test for increasing judgements as a function of the summary statistic. Each row reports
the effect size of the pairwise comparison of judgements given two summary statistics. Asterisks
indicate significance of the pairwise difference using the Mann-Whitney-Wilcoxon test; * at 10%,
** at 5%, *** at 1%.
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reject the null hypothesis of no trend for all treatments, (p = .084 for independent, p = .048 for
positive correlation, and p = .030 for negative correlation).

Our data therefore show a contrast between the patterns in participants’ valuations and the pat-
terns in their expectation differences in the negative treatment. Table 2 suggests stated valuations
remain high in the negative treatment even when the Bayesian posterior gives a low chance the
offered board is of the high type, and Result 1 formalises this statement. However, Result 3 shows
expectation differences are more optimistic in situations in which the Bayesian posterior advises
they should indeed be more optimistic.

7 Discussion

Our experiment was motivated by the conjecture that human decision-makers have a tendency to
use case-based reasoning even when events are well-defined and when the objective probabilities
of those events can be found by Bayesian reasoning from prior information. More specifically, we
tested the “case-based weighting conjecture” that systematic violations of EUT occur when infor-
mation about correlation is not embedded in experienced decision outcomes and when Bayesian
reasoning involves inferences between lotteries that are saliently dissimilar. We designed the exper-
iment in the belief that this conjecture was consistent with the psychological intuitions of CBDT.
Had the evidence confirmed that conjecture, we would have interpreted our results as providing
support for CBDT. In fact, we found no significant evidence of the effects implied by the conjec-
ture. If we are right to claim that our conjecture reflects the assumed psychology of case-based
reasoning, we must conclude that our results provide weak evidence against CBDT.

However, we should point out that an experiment with some similarities to ours has found
evidence of a type of correlation neglect which, although not the type that we tested for, is also
consistent with CBDT. Charness and Levin (2005) report an individual choice experiment in which
there were two urns (“left” and “right”) from which balls are drawn with replacement. Balls were
either “white” (losing balls) or “black” (winning balls). A prior random event, not revealed to
subjects, determined the distribution of balls in the two urns in such a way that a winning draw
from one urn increased the posterior probability of a winning draw from the other. (Compare
our positive correlation treatment.) In the context of CBDT, the most interesting of Charness and
Levin’s treatments were those in which subjects were required to play one lottery on a specified
urn and then, after the outcome of that lottery was revealed, played a second lottery on whichever
urn they chose. The parameters of the experiment were fixed so that, if the first lottery was on
the left urn, the Bayes-rational response was to stay with the left urn after a loss, but to shift
to the right urn after a win. In fact, subjects’ responses showed a strong tendency towards the
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opposite pattern, as implied by the win-stay-lose-shift heuristic (Robbins, 1952). This heuristic
is consistent with CBDT if the utility of a win is higher than the subject’s aspiration level.10 A
significant difference between our experiment and Charness and Levin’s is that in ours, subjects
did not choose between “staying” and “shifting”; they saw a fixed number of trials of each lottery
and then reported a valuation for one of the lotteries, which had been selected at random. Thus,
our experiment tests for a possible effect of CBDT in a situation in which the win-stay-lose-shift
heuristic is not applicable.

Although our experiment finds no evidence of the specific form of correlation neglect im-
plied by our conjecture, it is clear our participants found it difficult to perform Bayesian reasoning
about decisions that involved negative correlation. More precisely, when reporting valuations of
an offered lottery i, participants were generally able to recognise the irrelevance of outcomes of
lotteries that were independent of i, and to recognise the relevance of outcomes of lotteries that
were positively correlated with i; but they failed to recognise the relevance of negative correlation.
Surprisingly, however, their stated probability judgements about lottery i (expressed in qualitative
statements about the “chance” of winning) showed Bayesian responses to independence, positive
correlation, and negative correlation. Our post-hoc conjecture is that the problem was one of cog-
nitive overload. Intuitively, negative correlation is a more difficult concept than independence or
positive correlation, and working out one’s willingness to exchange a lottery for money is more
difficult than merely judging the chance of winning if one plays it. The combination of these two
sources of difficulty may have been too challenging for our participants.

This surprising finding raises doubts about the almost universal practice in experimental eco-
nomics of treating incentivised decision problems as the gold standard for the elicitation of partic-
ipants’ beliefs. If linking the elicitation of beliefs with problems of decision under uncertainty can
lead to cognitive overload, experimentalists need to consider the possibility that direct, nonincen-
tivised questions about beliefs might produce more accurate data.

References
Kenneth Arrow and Leonid Hurwicz. An optimality criterion for decision making under ignorance. In

Uncertainty and Expectations in Economics: Essays in Honour of G. L. S. Shackle, pages 1–11. Basil
Blackwell, Oxford, 1972.

Nicholas Bardsley, Robin Cubitt, Graham Loomes, Peter Moffatt, Chris Starmer, and Robert Sugden. Ex-
perimental Economics: Rethinking the Rules. Princeton University Press, 2010.

Gordon Becker, Morris DeGroot, and Jacob Marschak. Measuring utility by a single-response sequential
method. Behavioral Science, 9(3):226–232, 1964.

10Gilboa and Schmeidler (1995, p. 610) discuss a similar example.

26



Han Bleichrodt, Martin Filko, Amit Kothiyal, and Peter P. Wakker. Making case-based decision theory
directly observable: Dataset. American Economic Journal: Microeconomics, 9, 2017.

Robert R. Bush and Frederick Mosteller. A stochastic model with applications to learning. The Annals of
Mathematical Statistics, 24:559–585, 1953.

Gary Charness and Dan Levin. When optimal choices feel wrong: A laboratory study of Bayesian updating,
complexity, and affect. American Economic Review, 95:1300–1309, 2005.

Jack Cuzick. A Wilcoxon-type test for trend. Statistics in Medicine, 4:87–90, 1985.
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A Determining winning numbers

Before each session of the positive correlation treatment, forty distinct “winning” numbers were
determined by draws (without replacement) from a bingo cage with 100 balls numbered from 1 to
100. The winning numbers were distributed between two envelopes according to the order in which
they had been drawn, thirty numbers being put in one envelope and ten in the other. The envelopes
were then sealed. This process was fully explained to participants. At an appropriate stage in the
reading aloud of the experimental instructions, the two envelopes were shown to participants and
placed in a bag. A participant was asked to draw one envelope from the bag and to mark it “blue
and yellow”. While the experimenter continued to read the instructions, an assistant entered the
numbers in that envelope into the program for the experiment. These became the winning numbers
on both game boards.

Before each session of the negative correlation treatment, forty distinct winning numbers were
drawn in the same way as for the positive treatment; thirty were placed in one envelope and ten in
the other. The two envelopes were put in a bag. A participant drew one envelope from the bag and
marked it “blue”. The numbers in this envelope became the winning numbers on the blue game
board. She then drew the second envelope and marked it “yellow”; the numbers in this envelope
became the winning numbers on the yellow game board.

Before each session of the independent treatment, forty distinct winning numbers were drawn
as for the other two treatments; thirty were placed in one envelope and ten in the other. This pair
of envelopes was assigned to the blue game board. All balls were returned to the bingo cage and
the process was repeated, resulting in a second pair of envelopes, assigned to the yellow game
board. A participant drew one of the first pair of envelopes and marked it “blue”. The numbers
in this envelope became the winning numbers on the blue game board. She then drew one of the
second pair of envelopes and marked it “yellow”; the numbers in this envelope became the winning
numbers on the yellow game board.

In all treatments, after the winning numbers had been entered into the program, all envelopes
were posted on a wall. Participants were invited to inspect the contents of the envelopes at the end
of the session.

B Bayesian posteriors

In calculating the posteriors, recall that the samples from the board are drawn without replacement.
Therefore, the distribution of hits is given by a suitable parameterisation of the hypergeometric
distribution.

In the independent treatment, let H denote the state in which board i is of the high type, and
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L the state in which it is low. If board i is of the high type, then hi follows the hypergeometric
distribution,

P (hi|H) =

(
30
hi

)(
70

5−hi

)(
100
5

)
and if board i is of the low type, then hi follows the hypergeometric distribution,

P (hi|L) =
(
10
hi

)(
90

5−hi

)(
100
5

) .

In the positive treatment, let H denote the state in which both boards i and j are of the high
type, and L the state in which both are low. Conditional on state H , the total number of hits hi+hj
follow the hypergeometric distribution,

P (hi + hj|H) =

(
30

hi+hj

)(
70

10−hi−hj

)(
100
10

)
and conditional on state L, then hi + hj follows the hypergeometric distribution,

P (hi + hj|L) =

(
10

hi+hj

)(
90

10−hi−hj

)(
100
10

) .

The calculation of probabilities for the negative treatment deserves more detailed comment.
Let H denote the state in which board i is high and board j is low, and L denote the state in which
board i is low and board j is high. Suppose that among the five numbers selected as trials for board
i there were hi winning numbers on board i, and sj winning numbers on board j. Among the five
numbers selected as trials for board j, suppose there were hj winning numbers on board j, and si
winning numbers on board i. In our setup, participants do observe hi and hj , but do not observe
si and sj . Because in our design the winning numbers on the two boards were guaranteed to be
distinct, the random variables hi and hj are not independent conditional on H or L.

The probability of having hi winning numbers on board i and sj winning numbers on board j
among the five numbers revealed for board i is given by the multivariate hypergeometric distribu-
tion,

P (hi, sj|H) =

(
30
hi

)(
10
sj

)(
60

5−hi−sj

)(
100
5

) .

The probability of having hj winning numbers on board j and si winning numbers on board i

among the five numbers revealed for board i, conditional on the outcome of the draws on board i,
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is also a multivariate hypergeometric distribution,

P (hj, si|hi, sj, H) =

(
30−hi

si

)(
10−sj
hi

)(
55+hi+sj
5−si−hj

)(
95
5

) .

Therefore, the total probability in state H of seeing hi winning numbers among the five draws on
board i, and hj winning numbers among the five draws on board j, is obtained by summing over
the unobserved variables si and sj ,

P (hi, hj|H) =
5∑

si=0

5∑
sj=0

(
30
hi

)(
30−hi

si

)(
10
sj

)(
10−sj
hj

)(
60

5−hi−sj

)(
55+hi+sj
5−si−hj

)
.(

100
5

)(
95
5

) .

By symmetry, P (hi, hj|L) = P (hj, hi|H). Using these formulas it is straightforward to tabulate
the posterior probabilities as given in Table 1.

The calculation above takes care to reflect the fact that the sets of winning numbers on the
two boards are disjoint. As an alternative simplifying assumption, one could assume that hi and
hj are independent conditional on the assignment of the board types.11 Then, conditional on the
board type, hi and hj would follow independent hypergeometric distributions, and the posterior
probabilities would be

ρi(hi, hj) hj = 0 hj = 1 hj = 2 hj = 3

hi = 0 .500 .204 .058 .013
hi = 1 .796 .500 .193 .050
hi = 2 .942 .807 .500 .181
hi = 3 .987 .950 .820 .500

These differ only slightly from the results of the precise calculation given in Table 1. The ranking
of memories by posterior is not affected.

11We thank Peter Moffatt for suggesting this.
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